Clustering

The aeon.clustering module contains algorithms for time series clustering.

All clusterers in aeon can be listed using the aeon.registry.all_estimators utility, using estimator_types=”clusterer”, optionally filtered by tags. Valid tags can be listed using aeon.registry.all_tags.

Deep learning

BaseDeepClusterer([n_clusters, estimator, ...])

Abstract base class for deep learning time series clusterers.

AEFCNClusterer([n_clusters, estimator, ...])

Auto-Encoder based Fully Convolutional Network (FCN), as described in [R4f194d8f8b22-1].

AEResNetClusterer([n_clusters, estimator, ...])

Auto-Encoder with Residual Network backbone for clustering.

Clustering Algorithms

TimeSeriesKMeans([n_clusters, ...])

Time series K-means clustering implementation.

TimeSeriesKMedoids([n_clusters, ...])

Time series K-medoids implementation.

TimeSeriesKShapes(*args, **kwargs)

Kshape algorithm: wrapper of the tslearn implementation.

TimeSeriesKShape([n_clusters, ...])

Kshape algorithm: wrapper of the tslearn implementation.

TimeSeriesKernelKMeans([n_clusters, kernel, ...])

Kernel K Means [R3e7c374b18c1-1]: wrapper of the tslearn implementation.

TimeSeriesCLARA([n_clusters, ...])

Time series CLARA implementation.

TimeSeriesCLARANS([n_clusters, ...])

Time series CLARANS implementation.

Base

BaseClusterer([n_clusters])

Abstract base class for time series clusterers.