IndividualInceptionRegressor¶
- class IndividualInceptionRegressor(n_filters=32, n_conv_per_layer=3, kernel_size=40, use_max_pooling=True, max_pool_size=3, strides=1, dilation_rate=1, padding='same', activation='relu', use_bias=False, use_residual=True, use_bottleneck=True, bottleneck_size=32, depth=6, use_custom_filters=False, output_activation='linear', file_path='./', save_best_model=False, save_last_model=False, save_init_model=False, best_file_name='best_model', last_file_name='last_model', init_file_name='init_model', batch_size=64, use_mini_batch_size=False, n_epochs=1500, callbacks=None, random_state=None, verbose=False, loss='mean_squared_error', metrics='mean_squared_error', optimizer=None)[source]¶
Single Inception regressor.
- Parameters:
- depthint, default = 6,
the number of inception modules used
- n_filtersint or list of int32, default = 32,
the number of filters used in one inception module, if not a list, the same number of filters is used in all inception modules
- n_conv_per_layerint or list of int, default = 3,
the number of convolution layers in each inception module, if not a list, the same number of convolution layers is used in all inception modules
- kernel_sizeint or list of int, default = 40,
the head kernel size used for each inception module, if not a list, the same is used in all inception modules
- use_max_poolingbool or list of bool, default = True,
condition whether or not to use max pooling layer in inception modules,if not a list, the same is used in all inception modules
- max_pool_sizeint or list of int, default = 3,
the size of the max pooling layer, if not a list, the same is used in all inception modules
- stridesint or list of int, default = 1,
the strides of kernels in convolution layers for each inception module, if not a list, the same is used in all inception modules
- dilation_rateint or list of int, default = 1,
the dilation rate of convolutions in each inception module, if not a list, the same is used in all inception modules
- paddingstr or list of str, default = “same”,
the type of padding used for convoltuon for each inception module, if not a list, the same is used in all inception modules
- activationstr or list of str, default = “relu”,
the activation function used in each inception module, if not a list, the same is used in all inception modules
- use_biasbool or list of bool, default = False,
condition whether or not convolutions should use bias values in each inception module, if not a list, the same is used in all inception modules
- use_residualbool, default = True,
condition whether or not to use residual connections all over Inception
- use_bottleneckbool, default = True,
condition whether or not to use bottlesnecks all over Inception
- bottleneck_sizeint, default = 32,
the bottleneck size in case use_bottleneck = True
- use_custom_filtersbool, default = False,
condition on whether or not to use custom filters in the first inception module
- output_activationstr, default = “linear”,
the output activation of the regressor
- batch_sizeint, default = 64
the number of samples per gradient update.
- use_mini_batch_sizebool, default = False
condition on using the mini batch size formula Wang et al.
- n_epochsint, default = 1500
the number of epochs to train the model.
- callbackskeras callback or list of callbacks,
default = None The default list of callbacks are set to ModelCheckpoint and ReduceLROnPlateau.
- file_pathstr, default = ‘./’
file_path when saving model_Checkpoint callback
- save_best_modelbool, default = False
Whether or not to save the best model, if the modelcheckpoint callback is used by default, this condition, if True, will prevent the automatic deletion of the best saved model from file and the user can choose the file name
- save_last_modelbool, default = False
Whether or not to save the last model, last epoch trained, using the base class method save_last_model_to_file
- save_init_modelbool, default = False
Whether to save the initialization of the model.
- best_file_namestr, default = “best_model”
The name of the file of the best model, if save_best_model is set to False, this parameter is discarded
- last_file_namestr, default = “last_model”
The name of the file of the last model, if save_last_model is set to False, this parameter is discarded
- init_file_namestr, default = “init_model”
The name of the file of the init model, if save_init_model is set to False, this parameter is discarded.
- random_stateint, RandomState instance or None, default=None
If int, random_state is the seed used by the random number generator; If RandomState instance, random_state is the random number generator; If None, the random number generator is the RandomState instance used by np.random. Seeded random number generation can only be guaranteed on CPU processing, GPU processing will be non-deterministic.
- verboseboolean, default = False
whether to output extra information
- optimizerkeras.optimizer, default = tf.keras.optimizers.Adam()
The keras optimizer used for training.
- lossstr, default = “mean_squared_error”
The name of the keras training loss.
- metricsstr or list[str], default=”mean_squared_error”
The evaluation metrics to use during training. If a single string metric is provided, it will be used as the only metric. If a list of metrics are provided, all will be used for evaluation.
Notes
Adapted from the implementation from Fawaz et. al https://github.com/hfawaz/InceptionTime/blob/master/regressors/inception.py
and Ismail-Fawaz et al. https://github.com/MSD-IRIMAS/CF-4-TSC
References
..[1] Fawaz et al. InceptionTime: Finding AlexNet for Time Series regression, Data Mining and Knowledge Discovery, 34, 2020
..[2] Ismail-Fawaz et al. Deep Learning For Time Series regression Using New Hand-Crafted Convolution Filters, 2022 IEEE International Conference on Big Data.
Examples
>>> from aeon.regression.deep_learning import IndividualInceptionRegressor >>> from aeon.testing.data_generation import make_example_3d_numpy >>> X, y = make_example_3d_numpy(n_cases=10, n_channels=1, n_timepoints=12, ... return_y=True, regression_target=True, ... random_state=0) >>> inc = IndividualInceptionRegressor(n_epochs=20,batch_size=4) >>> inc.fit(X, y) IndividualInceptionRegressor(...)
Methods
build_model
(input_shape, **kwargs)Construct a compiled, un-trained, keras model that is ready for training.
clone
([random_state])Obtain a clone of the object with the same hyperparameters.
fit
(X, y)Fit time series regressor to training data.
fit_predict
(X, y)Fits the regressor and predicts class labels for X.
get_class_tag
(tag_name[, raise_error, ...])Get tag value from estimator class (only class tags).
Get class tags from estimator class and all its parent classes.
get_fitted_params
([deep])Get fitted parameters.
Sklearn metadata routing.
get_params
([deep])Get parameters for this estimator.
get_tag
(tag_name[, raise_error, ...])Get tag value from estimator class.
get_tags
()Get tags from estimator.
load_model
(model_path)Load a pre-trained keras model instead of fitting.
predict
(X)Predicts target variable for time series in X.
reset
([keep])Reset the object to a clean post-init state.
save_last_model_to_file
([file_path])Save the last epoch of the trained deep learning model.
score
(X, y[, metric, metric_params])Scores predicted labels against ground truth labels on X.
set_params
(**params)Set the parameters of this estimator.
set_tags
(**tag_dict)Set dynamic tags to given values.
summary
()Summary function to return the losses/metrics for model fit.
- build_model(input_shape, **kwargs)[source]¶
Construct a compiled, un-trained, keras model that is ready for training.
- Parameters:
- input_shapetuple
The shape of the data fed into the input layer
- Returns:
- tf.keras.models.Model
A compiled Keras Model
- clone(random_state=None)[source]¶
Obtain a clone of the object with the same hyperparameters.
A clone is a different object without shared references, in post-init state. This function is equivalent to returning
sklearn.clone
of self. Equal in value totype(self)(**self.get_params(deep=False))
.- Parameters:
- random_stateint, RandomState instance, or None, default=None
Sets the random state of the clone. If None, the random state is not set. If int, random_state is the seed used by the random number generator. If RandomState instance, random_state is the random number generator.
- Returns:
- estimatorobject
Instance of
type(self)
, clone of self (see above)
- fit(X, y) BaseCollectionEstimator [source]¶
Fit time series regressor to training data.
- Parameters:
- Xnp.ndarray or list
Input data, any number of channels, equal length series of shape
( n_cases, n_channels, n_timepoints)
or 2D np.array (univariate, equal length series) of shape(n_cases, n_timepoints)
or list of numpy arrays (any number of channels, unequal length series) of shape[n_cases]
, 2D np.array(n_channels, n_timepoints_i)
, wheren_timepoints_i
is length of seriesi
. Other types are allowed and converted into one of the above.Different estimators have different capabilities to handle different types of input. If self.get_tag(“capability:multivariate”)` is False, they cannot handle multivariate series, so either
n_channels == 1
is true or X is 2D of shape(n_cases, n_timepoints)
. Ifself.get_tag( "capability:unequal_length")
is False, they cannot handle unequal length input. In both situations, aValueError
is raised if X has a characteristic that the estimator does not have the capability for is passed.- ynp.ndarray
1D np.array of float, of shape
(n_cases)
- regression targets (ground truth) for fitting indices corresponding to instance indices in X.
- Returns:
- selfBaseRegressor
Reference to self.
Notes
Changes state by creating a fitted model that updates attributes ending in “_” and sets is_fitted flag to True.
- fit_predict(X, y) ndarray [source]¶
Fits the regressor and predicts class labels for X.
fit_predict produces prediction estimates using just the train data. By default, this is through 10x cross validation, although some estimators may utilise specialist techniques such as out-of-bag estimates or leave-one-out cross-validation.
Regressors which override _fit_predict will have the
capability:train_estimate
tag set to True.Generally, this will not be the same as fitting on the whole train data then making train predictions. To do this, you should call fit(X,y).predict(X)
- Parameters:
- Xnp.ndarray or list
Input data, any number of channels, equal length series of shape
( n_cases, n_channels, n_timepoints)
or 2D np.array (univariate, equal length series) of shape(n_cases, n_timepoints)
or list of numpy arrays (any number of channels, unequal length series) of shape[n_cases]
, 2D np.array(n_channels, n_timepoints_i)
, wheren_timepoints_i
is length of seriesi
. other types are allowed and converted into one of the above.Different estimators have different capabilities to handle different types of input. If self.get_tag(“capability:multivariate”)` is False, they cannot handle multivariate series, so either
n_channels == 1
is true or X is 2D of shape(n_cases, n_timepoints)
. Ifself.get_tag( "capability:unequal_length")
is False, they cannot handle unequal length input. In both situations, aValueError
is raised if X has a characteristic that the estimator does not have the capability for is passed.- ynp.ndarray
1D np.array of float, of shape
(n_cases)
- regression targets (ground truth) for fitting indices corresponding to instance indices in X.
- Returns:
- predictionsnp.ndarray
1D np.array of float, of shape (n_cases) - predicted regression labels indices correspond to instance indices in X
- classmethod get_class_tag(tag_name, raise_error=True, tag_value_default=None)[source]¶
Get tag value from estimator class (only class tags).
- Parameters:
- tag_namestr
Name of tag value.
- raise_errorbool, default=True
Whether a ValueError is raised when the tag is not found.
- tag_value_defaultany type, default=None
Default/fallback value if tag is not found and error is not raised.
- Returns:
- tag_value
Value of the
tag_name
tag in cls. If not found, returns an error ifraise_error
is True, otherwise it returnstag_value_default
.
- Raises:
- ValueError
if
raise_error
is True andtag_name
is not inself.get_tags().keys()
Examples
>>> from aeon.classification import DummyClassifier >>> DummyClassifier.get_class_tag("capability:multivariate") True
- classmethod get_class_tags()[source]¶
Get class tags from estimator class and all its parent classes.
- Returns:
- collected_tagsdict
Dictionary of tag name and tag value pairs. Collected from
_tags
class attribute via nested inheritance. These are not overridden by dynamic tags set byset_tags
or class__init__
calls.
- get_fitted_params(deep=True)[source]¶
Get fitted parameters.
- State required:
Requires state to be “fitted”.
- Parameters:
- deepbool, default=True
If True, will return the fitted parameters for this estimator and contained subobjects that are estimators.
- Returns:
- fitted_paramsdict
Fitted parameter names mapped to their values.
- get_params(deep=True)[source]¶
Get parameters for this estimator.
- Parameters:
- deepbool, default=True
If True, will return the parameters for this estimator and contained subobjects that are estimators.
- Returns:
- paramsdict
Parameter names mapped to their values.
- get_tag(tag_name, raise_error=True, tag_value_default=None)[source]¶
Get tag value from estimator class.
Includes dynamic and overridden tags.
- Parameters:
- tag_namestr
Name of tag to be retrieved.
- raise_errorbool, default=True
Whether a ValueError is raised when the tag is not found.
- tag_value_defaultany type, default=None
Default/fallback value if tag is not found and error is not raised.
- Returns:
- tag_value
Value of the
tag_name
tag in self. If not found, returns an error ifraise_error
is True, otherwise it returnstag_value_default
.
- Raises:
- ValueError
if raise_error is
True
andtag_name
is not inself.get_tags().keys()
Examples
>>> from aeon.classification import DummyClassifier >>> d = DummyClassifier() >>> d.get_tag("capability:multivariate") True
- get_tags()[source]¶
Get tags from estimator.
Includes dynamic and overridden tags.
- Returns:
- collected_tagsdict
Dictionary of tag name and tag value pairs. Collected from
_tags
class attribute via nested inheritance and then any overridden and new tags from__init__
orset_tags
.
- load_model(model_path)[source]¶
Load a pre-trained keras model instead of fitting.
When calling this function, all functionalities can be used such as predict etc. with the loaded model.
- Parameters:
- model_pathstr (path including model name and extension)
The directory where the model will be saved including the model name with a “.keras” extension. Example: model_path=”path/to/file/best_model.keras”
- Returns:
- None
- predict(X) ndarray [source]¶
Predicts target variable for time series in X.
- Parameters:
- Xnp.ndarray or list
Input data, any number of channels, equal length series of shape
( n_cases, n_channels, n_timepoints)
or 2D np.array (univariate, equal length series) of shape(n_cases, n_timepoints)
or list of numpy arrays (any number of channels, unequal length series) of shape[n_cases]
, 2D np.array(n_channels, n_timepoints_i)
, wheren_timepoints_i
is length of seriesi
other types are allowed and converted into one of the above.Different estimators have different capabilities to handle different types of input. If self.get_tag(“capability:multivariate”)` is False, they cannot handle multivariate series, so either
n_channels == 1
is true or X is 2D of shape(n_cases, n_timepoints)
. Ifself.get_tag( "capability:unequal_length")
is False, they cannot handle unequal length input. In both situations, aValueError
is raised if X has a characteristic that the estimator does not have the capability for is passed.
- Returns:
- predictionsnp.ndarray
1D np.array of float, of shape (n_cases) - predicted regression labels indices correspond to instance indices in X
- reset(keep=None)[source]¶
Reset the object to a clean post-init state.
After a
self.reset()
call, self is equal or similar in value totype(self)(**self.get_params(deep=False))
, assuming no other attributes were kept usingkeep
.- Detailed behaviour:
- removes any object attributes, except:
hyper-parameters (arguments of
__init__
) object attributes containing double-underscores, i.e., the string “__”
runs
__init__
with current values of hyperparameters (result ofget_params
)- Not affected by the reset are:
object attributes containing double-underscores class and object methods, class attributes any attributes specified in the
keep
argument
- Parameters:
- keepNone, str, or list of str, default=None
If None, all attributes are removed except hyperparameters. If str, only the attribute with this name is kept. If list of str, only the attributes with these names are kept.
- Returns:
- selfobject
Reference to self.
- save_last_model_to_file(file_path='./')[source]¶
Save the last epoch of the trained deep learning model.
- Parameters:
- file_pathstr, default = “./”
The directory where the model will be saved
- Returns:
- None
- score(X, y, metric='r2', metric_params=None) float [source]¶
Scores predicted labels against ground truth labels on X.
- Parameters:
- Xnp.ndarray or list
Input data, any number of channels, equal length series of shape
( n_cases, n_channels, n_timepoints)
or 2D np.array (univariate, equal length series) of shape(n_cases, n_timepoints)
or list of numpy arrays (any number of channels, unequal length series) of shape[n_cases]
, 2D np.array(n_channels, n_timepoints_i)
, wheren_timepoints_i
is length of seriesi
. other types are allowed and converted into one of the above.Different estimators have different capabilities to handle different types of input. If self.get_tag(“capability:multivariate”)` is False, they cannot handle multivariate series, so either
n_channels == 1
is true or X is 2D of shape(n_cases, n_timepoints)
. Ifself.get_tag( "capability:unequal_length")
is False, they cannot handle unequal length input. In both situations, aValueError
is raised if X has a characteristic that the estimator does not have the capability for is passed.- ynp.ndarray
1D np.array of float, of shape
(n_cases)
- regression targets (ground truth) for fitting indices corresponding to instance indices in X.- metricUnion[str, callable], default=”r2”,
Defines the scoring metric to test the fit of the model. For supported strings arguments, check sklearn.metrics.get_scorer_names.
- metric_paramsdict, default=None,
Contains parameters to be passed to the scoring function. If None, no parameters are passed.
- Returns:
- scorefloat
MSE score of predict(X) vs y
- set_params(**params)[source]¶
Set the parameters of this estimator.
The method works on simple estimators as well as on nested objects (such as
Pipeline
). The latter have parameters of the form<component>__<parameter>
so that it’s possible to update each component of a nested object.- Parameters:
- **paramsdict
Estimator parameters.
- Returns:
- selfestimator instance
Estimator instance.