AEBiGRUClusterer

class AEBiGRUClusterer(estimator=None, latent_space_dim=128, temporal_latent_space=False, n_layers=2, n_units=None, activation='relu', n_epochs=2000, batch_size=32, use_mini_batch_size=False, random_state=None, verbose=False, loss='mse', metrics=None, optimizer='Adam', file_path='./', save_best_model=False, save_last_model=False, save_init_model=False, best_file_name='best_model', last_file_name='last_model', init_file_name='init_model', callbacks=None)[source]

Auto-Encoder based Bidirectional GRU Network.

Parameters:
estimatoraeon clusterer, default=None

An aeon estimator to be built using the transformed data. Defaults to aeon TimeSeriesKMeans() with euclidean distance and mean averaging method and n_clusters set to 2.

latent_space_dimint, default=128

Dimension of the latent space of the auto-encoder.

temporal_latent_spacebool, default = False

Flag to choose whether the latent space is an MTS or Euclidean space.

n_layersint, default = 2

Number of Bidirectional GRU Layers.

activationstr or list of str, default = “relu”

Activation used after the Bidirectional GRU Layer.

n_epochsint, default = 2000

The number of epochs to train the model.

batch_sizeint, default = 16

The number of samples per gradient update.

use_mini_batch_sizebool, default = True,

Whether or not to use the mini batch size formula.

random_stateint, RandomState instance or None, default=None

If int, random_state is the seed used by the random number generator; If RandomState instance, random_state is the random number generator; If None, the random number generator is the RandomState instance used by np.random. Seeded random number generation can only be guaranteed on CPU processing, GPU processing will be non-deterministic.

verboseboolean, default = False

Whether to output extra information.

lossstr, default=”mean_squared_error”

Fit parameter for the keras model.

metricsstr, default=[“mean_squared_error”]

Metrics to evaluate model predictions.

optimizerkeras.optimizers object, default = Adam(lr=0.01)

Specify the optimizer and the learning rate to be used.

file_pathstr, default = “./”

File path to save best model.

save_best_modelbool, default = False

Whether or not to save the best model, if the modelcheckpoint callback is used by default, this condition, if True, will prevent the automatic deletion of the best saved model from file and the user can choose the file name.

save_last_modelbool, default = False

Whether or not to save the last model, last epoch trained, using the base class method save_last_model_to_file.

save_init_modelbool, default = False

Whether to save the initialization of the model.

best_file_namestr, default = “best_model”

The name of the file of the best model, if save_best_model is set to False, this parameter is discarded.

last_file_namestr, default = “last_model”

The name of the file of the last model, if save_last_model is set to False, this parameter is discarded.

init_file_namestr, default = “init_model”

The name of the file of the init model, if save_init_model is set to False, this parameter is discarded.

callbackskeras.callbacks, default = None

List of keras callbacks.

Examples

>>> from aeon.clustering.deep_learning import AEBiGRUClusterer
>>> from aeon.clustering import DummyClusterer
>>> from aeon.datasets import load_unit_test
>>> X_train, y_train = load_unit_test(split="train")
>>> X_test, y_test = load_unit_test(split="test")
>>> _clst = DummyClusterer(n_clusters=2)
>>> aebgru=AEBiGRUClusterer( estimator=_clst, n_epochs=20,
... batch_size=4 )  
>>> aebgru.fit(X_train)  
AEBiGRUClusterer(...)

Methods

build_model(input_shape, **kwargs)

Construct a compiled, un-trained, keras model that is ready for training.

clone([random_state])

Obtain a clone of the object with the same hyperparameters.

fit(X[, y])

Fit time series clusterer to training data.

fit_predict(X[, y])

Compute cluster centers and predict cluster index for each time series.

get_class_tag(tag_name[, raise_error, ...])

Get tag value from estimator class (only class tags).

get_class_tags()

Get class tags from estimator class and all its parent classes.

get_fitted_params([deep])

Get fitted parameters.

get_metadata_routing()

Sklearn metadata routing.

get_params([deep])

Get parameters for this estimator.

get_tag(tag_name[, raise_error, ...])

Get tag value from estimator class.

get_tags()

Get tags from estimator.

load_model(model_path, estimator)

Load a pre-trained keras model instead of fitting.

predict(X)

Predict the closest cluster each sample in X belongs to.

predict_proba(X)

Predicts labels probabilities for sequences in X.

reset([keep])

Reset the object to a clean post-init state.

save_last_model_to_file([file_path])

Save the last epoch of the trained deep learning model.

set_params(**params)

Set the parameters of this estimator.

set_tags(**tag_dict)

Set dynamic tags to given values.

summary()

Summary function to return the losses/metrics for model fit.

build_model(input_shape, **kwargs)[source]

Construct a compiled, un-trained, keras model that is ready for training.

In aeon, time series are stored in numpy arrays of shape (n_channels,n_timepoints). Keras/tensorflow assume data is in shape (n_timepoints,n_channels). This method also assumes (n_timepoints,n_channels). Transpose should happen in fit.

Parameters:
input_shapetuple

The shape of the data fed into the input layer, should be (n_timepoints,n_channels).

Returns:
outputa compiled Keras Model.
clone(random_state=None)[source]

Obtain a clone of the object with the same hyperparameters.

A clone is a different object without shared references, in post-init state. This function is equivalent to returning sklearn.clone of self. Equal in value to type(self)(**self.get_params(deep=False)).

Parameters:
random_stateint, RandomState instance, or None, default=None

Sets the random state of the clone. If None, the random state is not set. If int, random_state is the seed used by the random number generator. If RandomState instance, random_state is the random number generator.

Returns:
estimatorobject

Instance of type(self), clone of self (see above)

fit(X, y=None) BaseCollectionEstimator[source]

Fit time series clusterer to training data.

Parameters:
X3D np.ndarray (any number of channels, equal length series)

of shape (n_cases, n_channels, n_timepoints)

or 2D np.array (univariate, equal length series)

of shape (n_cases, n_timepoints)

or list of numpy arrays (any number of channels, unequal length series)

of shape [n_cases], 2D np.array (n_channels, n_timepoints_i), where n_timepoints_i is length of series i

other types are allowed and converted into one of the above.

y: ignored, exists for API consistency reasons.
Returns:
self:

Fitted estimator.

fit_predict(X, y=None) ndarray[source]

Compute cluster centers and predict cluster index for each time series.

Convenience method; equivalent of calling fit(X) followed by predict(X)

Parameters:
Xnp.ndarray (2d or 3d array of shape (n_cases, n_timepoints) or shape

(n_cases, n_channels, n_timepoints)). Time series instances to train clusterer and then have indexes each belong to return.

y: ignored, exists for API consistency reasons.
Returns:
np.ndarray (1d array of shape (n_cases,))

Index of the cluster each time series in X belongs to.

classmethod get_class_tag(tag_name, raise_error=True, tag_value_default=None)[source]

Get tag value from estimator class (only class tags).

Parameters:
tag_namestr

Name of tag value.

raise_errorbool, default=True

Whether a ValueError is raised when the tag is not found.

tag_value_defaultany type, default=None

Default/fallback value if tag is not found and error is not raised.

Returns:
tag_value

Value of the tag_name tag in cls. If not found, returns an error if raise_error is True, otherwise it returns tag_value_default.

Raises:
ValueError

if raise_error is True and tag_name is not in self.get_tags().keys()

Examples

>>> from aeon.classification import DummyClassifier
>>> DummyClassifier.get_class_tag("capability:multivariate")
True
classmethod get_class_tags()[source]

Get class tags from estimator class and all its parent classes.

Returns:
collected_tagsdict

Dictionary of tag name and tag value pairs. Collected from _tags class attribute via nested inheritance. These are not overridden by dynamic tags set by set_tags or class __init__ calls.

get_fitted_params(deep=True)[source]

Get fitted parameters.

State required:

Requires state to be “fitted”.

Parameters:
deepbool, default=True

If True, will return the fitted parameters for this estimator and contained subobjects that are estimators.

Returns:
fitted_paramsdict

Fitted parameter names mapped to their values.

get_metadata_routing()[source]

Sklearn metadata routing.

Not supported by aeon estimators.

get_params(deep=True)[source]

Get parameters for this estimator.

Parameters:
deepbool, default=True

If True, will return the parameters for this estimator and contained subobjects that are estimators.

Returns:
paramsdict

Parameter names mapped to their values.

get_tag(tag_name, raise_error=True, tag_value_default=None)[source]

Get tag value from estimator class.

Includes dynamic and overridden tags.

Parameters:
tag_namestr

Name of tag to be retrieved.

raise_errorbool, default=True

Whether a ValueError is raised when the tag is not found.

tag_value_defaultany type, default=None

Default/fallback value if tag is not found and error is not raised.

Returns:
tag_value

Value of the tag_name tag in self. If not found, returns an error if raise_error is True, otherwise it returns tag_value_default.

Raises:
ValueError

if raise_error is True and tag_name is not in self.get_tags().keys()

Examples

>>> from aeon.classification import DummyClassifier
>>> d = DummyClassifier()
>>> d.get_tag("capability:multivariate")
True
get_tags()[source]

Get tags from estimator.

Includes dynamic and overridden tags.

Returns:
collected_tagsdict

Dictionary of tag name and tag value pairs. Collected from _tags class attribute via nested inheritance and then any overridden and new tags from __init__ or set_tags.

load_model(model_path, estimator)[source]

Load a pre-trained keras model instead of fitting.

When calling this function, all functionalities can be used such as predict, predict_proba etc. with the loaded model.

Parameters:
model_pathstr (path including model name and extension)

The directory where the model will be saved including the model name with a “.keras” extension. Example: model_path=”path/to/file/best_model.keras”

estimatorestimatoraeon clusterer

Pre-trained clusterer needed for loading model.

Returns:
None
predict(X) ndarray[source]

Predict the closest cluster each sample in X belongs to.

Parameters:
X3D np.ndarray

Input data, any number of channels, equal length series of shape ( n_cases, n_channels, n_timepoints) or 2D np.array (univariate, equal length series) of shape (n_cases, n_timepoints) or list of numpy arrays (any number of channels, unequal length series) of shape [n_cases], 2D np.array (n_channels, n_timepoints_i), where n_timepoints_i is length of series i. Other types are allowed and converted into one of the above.

Returns:
np.array

shape ``(n_cases)`, index of the cluster each time series in X. belongs to.

predict_proba(X) ndarray[source]

Predicts labels probabilities for sequences in X.

Default behaviour is to call _predict and set the predicted class probability to 1, other class probabilities to 0. Override if better estimates are obtainable.

Parameters:
X3D np.ndarray

Input data, any number of channels, equal length series of shape ( n_cases, n_channels, n_timepoints) or 2D np.array (univariate, equal length series) of shape (n_cases, n_timepoints) or list of numpy arrays (any number of channels, unequal length series) of shape [n_cases], 2D np.array (n_channels, n_timepoints_i), where n_timepoints_i is length of series i. Other types are allowed and converted into one of the above.

Returns:
y2D array of shape [n_cases, n_classes] - predicted class probabilities

1st dimension indices correspond to instance indices in X 2nd dimension indices correspond to possible labels (integers) (i, j)-th entry is predictive probability that i-th instance is of class j

reset(keep=None)[source]

Reset the object to a clean post-init state.

After a self.reset() call, self is equal or similar in value to type(self)(**self.get_params(deep=False)), assuming no other attributes were kept using keep.

Detailed behaviour:
removes any object attributes, except:

hyper-parameters (arguments of __init__) object attributes containing double-underscores, i.e., the string “__”

runs __init__ with current values of hyperparameters (result of get_params)

Not affected by the reset are:

object attributes containing double-underscores class and object methods, class attributes any attributes specified in the keep argument

Parameters:
keepNone, str, or list of str, default=None

If None, all attributes are removed except hyperparameters. If str, only the attribute with this name is kept. If list of str, only the attributes with these names are kept.

Returns:
selfobject

Reference to self.

save_last_model_to_file(file_path='./')[source]

Save the last epoch of the trained deep learning model.

Parameters:
file_pathstr, default = “./”

The directory where the model will be saved

Returns:
None
set_params(**params)[source]

Set the parameters of this estimator.

The method works on simple estimators as well as on nested objects (such as Pipeline). The latter have parameters of the form <component>__<parameter> so that it’s possible to update each component of a nested object.

Parameters:
**paramsdict

Estimator parameters.

Returns:
selfestimator instance

Estimator instance.

set_tags(**tag_dict)[source]

Set dynamic tags to given values.

Parameters:
**tag_dictdict

Dictionary of tag name and tag value pairs.

Returns:
selfobject

Reference to self.

summary()[source]

Summary function to return the losses/metrics for model fit.

Returns:
historydict or None,

Dictionary containing model’s train/validation losses and metrics