AEBiGRUClusterer¶
- class AEBiGRUClusterer(estimator=None, latent_space_dim=128, temporal_latent_space=False, n_layers=2, n_units=None, activation='relu', n_epochs=2000, batch_size=32, use_mini_batch_size=False, random_state=None, verbose=False, loss='mse', metrics=None, optimizer='Adam', file_path='./', save_best_model=False, save_last_model=False, save_init_model=False, best_file_name='best_model', last_file_name='last_model', init_file_name='init_model', callbacks=None)[source]¶
Auto-Encoder based Bidirectional GRU Network.
- Parameters:
- estimatoraeon clusterer, default=None
An aeon estimator to be built using the transformed data. Defaults to aeon TimeSeriesKMeans() with euclidean distance and mean averaging method and n_clusters set to 2.
- latent_space_dimint, default=128
Dimension of the latent space of the auto-encoder.
- temporal_latent_spacebool, default = False
Flag to choose whether the latent space is an MTS or Euclidean space.
- n_layersint, default = 2
Number of Bidirectional GRU Layers.
- activationstr or list of str, default = “relu”
Activation used after the Bidirectional GRU Layer.
- n_epochsint, default = 2000
The number of epochs to train the model.
- batch_sizeint, default = 16
The number of samples per gradient update.
- use_mini_batch_sizebool, default = True,
Whether or not to use the mini batch size formula.
- random_stateint, RandomState instance or None, default=None
If int, random_state is the seed used by the random number generator; If RandomState instance, random_state is the random number generator; If None, the random number generator is the RandomState instance used by np.random. Seeded random number generation can only be guaranteed on CPU processing, GPU processing will be non-deterministic.
- verboseboolean, default = False
Whether to output extra information.
- lossstr, default=”mean_squared_error”
Fit parameter for the keras model.
- metricsstr, default=[“mean_squared_error”]
Metrics to evaluate model predictions.
- optimizerkeras.optimizers object, default = Adam(lr=0.01)
Specify the optimizer and the learning rate to be used.
- file_pathstr, default = “./”
File path to save best model.
- save_best_modelbool, default = False
Whether or not to save the best model, if the modelcheckpoint callback is used by default, this condition, if True, will prevent the automatic deletion of the best saved model from file and the user can choose the file name.
- save_last_modelbool, default = False
Whether or not to save the last model, last epoch trained, using the base class method save_last_model_to_file.
- save_init_modelbool, default = False
Whether to save the initialization of the model.
- best_file_namestr, default = “best_model”
The name of the file of the best model, if save_best_model is set to False, this parameter is discarded.
- last_file_namestr, default = “last_model”
The name of the file of the last model, if save_last_model is set to False, this parameter is discarded.
- init_file_namestr, default = “init_model”
The name of the file of the init model, if save_init_model is set to False, this parameter is discarded.
- callbackskeras.callbacks, default = None
List of keras callbacks.
Examples
>>> from aeon.clustering.deep_learning import AEBiGRUClusterer >>> from aeon.clustering import DummyClusterer >>> from aeon.datasets import load_unit_test >>> X_train, y_train = load_unit_test(split="train") >>> X_test, y_test = load_unit_test(split="test") >>> _clst = DummyClusterer(n_clusters=2) >>> aebgru=AEBiGRUClusterer( estimator=_clst, n_epochs=20, ... batch_size=4 ) >>> aebgru.fit(X_train) AEBiGRUClusterer(...)
Methods
build_model
(input_shape, **kwargs)Construct a compiled, un-trained, keras model that is ready for training.
clone
([random_state])Obtain a clone of the object with the same hyperparameters.
fit
(X[, y])Fit time series clusterer to training data.
fit_predict
(X[, y])Compute cluster centers and predict cluster index for each time series.
get_class_tag
(tag_name[, raise_error, ...])Get tag value from estimator class (only class tags).
Get class tags from estimator class and all its parent classes.
get_fitted_params
([deep])Get fitted parameters.
Sklearn metadata routing.
get_params
([deep])Get parameters for this estimator.
get_tag
(tag_name[, raise_error, ...])Get tag value from estimator class.
get_tags
()Get tags from estimator.
load_model
(model_path, estimator)Load a pre-trained keras model instead of fitting.
predict
(X)Predict the closest cluster each sample in X belongs to.
Predicts labels probabilities for sequences in X.
reset
([keep])Reset the object to a clean post-init state.
save_last_model_to_file
([file_path])Save the last epoch of the trained deep learning model.
set_params
(**params)Set the parameters of this estimator.
set_tags
(**tag_dict)Set dynamic tags to given values.
summary
()Summary function to return the losses/metrics for model fit.
- build_model(input_shape, **kwargs)[source]¶
Construct a compiled, un-trained, keras model that is ready for training.
In aeon, time series are stored in numpy arrays of shape (n_channels,n_timepoints). Keras/tensorflow assume data is in shape (n_timepoints,n_channels). This method also assumes (n_timepoints,n_channels). Transpose should happen in fit.
- Parameters:
- input_shapetuple
The shape of the data fed into the input layer, should be (n_timepoints,n_channels).
- Returns:
- outputa compiled Keras Model.
- clone(random_state=None)[source]¶
Obtain a clone of the object with the same hyperparameters.
A clone is a different object without shared references, in post-init state. This function is equivalent to returning
sklearn.clone
of self. Equal in value totype(self)(**self.get_params(deep=False))
.- Parameters:
- random_stateint, RandomState instance, or None, default=None
Sets the random state of the clone. If None, the random state is not set. If int, random_state is the seed used by the random number generator. If RandomState instance, random_state is the random number generator.
- Returns:
- estimatorobject
Instance of
type(self)
, clone of self (see above)
- fit(X, y=None) BaseCollectionEstimator [source]¶
Fit time series clusterer to training data.
- Parameters:
- X3D np.ndarray (any number of channels, equal length series)
of shape (n_cases, n_channels, n_timepoints)
- or 2D np.array (univariate, equal length series)
of shape (n_cases, n_timepoints)
- or list of numpy arrays (any number of channels, unequal length series)
of shape [n_cases], 2D np.array (n_channels, n_timepoints_i), where n_timepoints_i is length of series i
other types are allowed and converted into one of the above.
- y: ignored, exists for API consistency reasons.
- Returns:
- self:
Fitted estimator.
- fit_predict(X, y=None) ndarray [source]¶
Compute cluster centers and predict cluster index for each time series.
Convenience method; equivalent of calling fit(X) followed by predict(X)
- Parameters:
- Xnp.ndarray (2d or 3d array of shape (n_cases, n_timepoints) or shape
(n_cases, n_channels, n_timepoints)). Time series instances to train clusterer and then have indexes each belong to return.
- y: ignored, exists for API consistency reasons.
- Returns:
- np.ndarray (1d array of shape (n_cases,))
Index of the cluster each time series in X belongs to.
- classmethod get_class_tag(tag_name, raise_error=True, tag_value_default=None)[source]¶
Get tag value from estimator class (only class tags).
- Parameters:
- tag_namestr
Name of tag value.
- raise_errorbool, default=True
Whether a ValueError is raised when the tag is not found.
- tag_value_defaultany type, default=None
Default/fallback value if tag is not found and error is not raised.
- Returns:
- tag_value
Value of the
tag_name
tag in cls. If not found, returns an error ifraise_error
is True, otherwise it returnstag_value_default
.
- Raises:
- ValueError
if
raise_error
is True andtag_name
is not inself.get_tags().keys()
Examples
>>> from aeon.classification import DummyClassifier >>> DummyClassifier.get_class_tag("capability:multivariate") True
- classmethod get_class_tags()[source]¶
Get class tags from estimator class and all its parent classes.
- Returns:
- collected_tagsdict
Dictionary of tag name and tag value pairs. Collected from
_tags
class attribute via nested inheritance. These are not overridden by dynamic tags set byset_tags
or class__init__
calls.
- get_fitted_params(deep=True)[source]¶
Get fitted parameters.
- State required:
Requires state to be “fitted”.
- Parameters:
- deepbool, default=True
If True, will return the fitted parameters for this estimator and contained subobjects that are estimators.
- Returns:
- fitted_paramsdict
Fitted parameter names mapped to their values.
- get_params(deep=True)[source]¶
Get parameters for this estimator.
- Parameters:
- deepbool, default=True
If True, will return the parameters for this estimator and contained subobjects that are estimators.
- Returns:
- paramsdict
Parameter names mapped to their values.
- get_tag(tag_name, raise_error=True, tag_value_default=None)[source]¶
Get tag value from estimator class.
Includes dynamic and overridden tags.
- Parameters:
- tag_namestr
Name of tag to be retrieved.
- raise_errorbool, default=True
Whether a ValueError is raised when the tag is not found.
- tag_value_defaultany type, default=None
Default/fallback value if tag is not found and error is not raised.
- Returns:
- tag_value
Value of the
tag_name
tag in self. If not found, returns an error ifraise_error
is True, otherwise it returnstag_value_default
.
- Raises:
- ValueError
if raise_error is
True
andtag_name
is not inself.get_tags().keys()
Examples
>>> from aeon.classification import DummyClassifier >>> d = DummyClassifier() >>> d.get_tag("capability:multivariate") True
- get_tags()[source]¶
Get tags from estimator.
Includes dynamic and overridden tags.
- Returns:
- collected_tagsdict
Dictionary of tag name and tag value pairs. Collected from
_tags
class attribute via nested inheritance and then any overridden and new tags from__init__
orset_tags
.
- load_model(model_path, estimator)[source]¶
Load a pre-trained keras model instead of fitting.
When calling this function, all functionalities can be used such as predict, predict_proba etc. with the loaded model.
- Parameters:
- model_pathstr (path including model name and extension)
The directory where the model will be saved including the model name with a “.keras” extension. Example: model_path=”path/to/file/best_model.keras”
- estimatorestimatoraeon clusterer
Pre-trained clusterer needed for loading model.
- Returns:
- None
- predict(X) ndarray [source]¶
Predict the closest cluster each sample in X belongs to.
- Parameters:
- X3D np.ndarray
Input data, any number of channels, equal length series of shape
( n_cases, n_channels, n_timepoints)
or 2D np.array (univariate, equal length series) of shape(n_cases, n_timepoints)
or list of numpy arrays (any number of channels, unequal length series) of shape[n_cases]
, 2D np.array(n_channels, n_timepoints_i)
, wheren_timepoints_i
is length of seriesi
. Other types are allowed and converted into one of the above.
- Returns:
- np.array
shape ``(n_cases)`, index of the cluster each time series in X. belongs to.
- predict_proba(X) ndarray [source]¶
Predicts labels probabilities for sequences in X.
Default behaviour is to call _predict and set the predicted class probability to 1, other class probabilities to 0. Override if better estimates are obtainable.
- Parameters:
- X3D np.ndarray
Input data, any number of channels, equal length series of shape
( n_cases, n_channels, n_timepoints)
or 2D np.array (univariate, equal length series) of shape(n_cases, n_timepoints)
or list of numpy arrays (any number of channels, unequal length series) of shape[n_cases]
, 2D np.array(n_channels, n_timepoints_i)
, wheren_timepoints_i
is length of seriesi
. Other types are allowed and converted into one of the above.
- Returns:
- y2D array of shape [n_cases, n_classes] - predicted class probabilities
1st dimension indices correspond to instance indices in X 2nd dimension indices correspond to possible labels (integers) (i, j)-th entry is predictive probability that i-th instance is of class j
- reset(keep=None)[source]¶
Reset the object to a clean post-init state.
After a
self.reset()
call, self is equal or similar in value totype(self)(**self.get_params(deep=False))
, assuming no other attributes were kept usingkeep
.- Detailed behaviour:
- removes any object attributes, except:
hyper-parameters (arguments of
__init__
) object attributes containing double-underscores, i.e., the string “__”
runs
__init__
with current values of hyperparameters (result ofget_params
)- Not affected by the reset are:
object attributes containing double-underscores class and object methods, class attributes any attributes specified in the
keep
argument
- Parameters:
- keepNone, str, or list of str, default=None
If None, all attributes are removed except hyperparameters. If str, only the attribute with this name is kept. If list of str, only the attributes with these names are kept.
- Returns:
- selfobject
Reference to self.
- save_last_model_to_file(file_path='./')[source]¶
Save the last epoch of the trained deep learning model.
- Parameters:
- file_pathstr, default = “./”
The directory where the model will be saved
- Returns:
- None
- set_params(**params)[source]¶
Set the parameters of this estimator.
The method works on simple estimators as well as on nested objects (such as
Pipeline
). The latter have parameters of the form<component>__<parameter>
so that it’s possible to update each component of a nested object.- Parameters:
- **paramsdict
Estimator parameters.
- Returns:
- selfestimator instance
Estimator instance.