CollectionTransformerPipeline

class CollectionTransformerPipeline(transformers)[source]

Pipeline of collection transformers.

The CollectionTransformerPipeline compositor chains transformers. The pipeline is constructed with a list of aeon transformers,

i.e., estimators following the BaseTransformer interface.

The transformer list can be unnamed - a simple list of transformers -

or string named - a list of pairs of string, estimator.

For a list of transformers trafo1, trafo2, …, trafoN,

the pipeline behaves as follows:

fit(X, y) - changes state by running trafo1.fit_transform on X,

them trafo2.fit_transform on the output of trafo1.fit_transform, etc sequentially, with trafo[i] receiving the output of trafo[i-1], and then running trafo[N].fit with X being the output of trafo[N-1], and y identical with the input to self.fit

transform(X, y) - result is of executing trafo1.transform, trafo2.transform,

etc with trafo[i].transform input = output of trafo[i-1].transform, then running trafo[N].transform on the output of trafo[N-1].transform, and returning the output.

Parameters:
transformersaeon or sklearn transformer or list of transformers

A transform or list of transformers. List of tuples (str, transformer) of transformers can also be passed, where the str is used to name the transformer. The objecst are cloned prior, as such the state of the input will not be modified by fitting the pipeline.

Attributes:
steps_list of tuples (str, estimator) of transformers

Clones of transformers which are fitted in the pipeline. Will always be in (str, estimator) format, even if transformers input is a singular transform or list of transformers.

Examples

>>> from aeon.transformations.collection import Resizer
>>> from aeon.transformations.collection.feature_based import (
...     SevenNumberSummary)
>>> from aeon.datasets import load_unit_test
>>> from aeon.transformations.collection.compose import (
...     CollectionTransformerPipeline)
>>> X, y = load_unit_test(split="train")
>>> pipeline = CollectionTransformerPipeline(
...     [Resizer(length=10), SevenNumberSummary()]
... )
>>> pipeline.fit(X, y)
CollectionTransformerPipeline(...)
>>> Xt = pipeline.transform(X, y)

Methods

clone([random_state])

Obtain a clone of the object with the same hyperparameters.

fit(X[, y])

Fit transformer to X, optionally using y if supervised.

fit_transform(X[, y])

Fit to data, then transform it.

get_class_tag(tag_name[, raise_error, ...])

Get tag value from estimator class (only class tags).

get_class_tags()

Get class tags from estimator class and all its parent classes.

get_fitted_params([deep])

Get fitted parameters.

get_metadata_routing()

Sklearn metadata routing.

get_params([deep])

Get parameters for this estimator.

get_tag(tag_name[, raise_error, ...])

Get tag value from estimator class.

get_tags()

Get tags from estimator.

inverse_transform(X[, y])

Inverse transform X and return an inverse transformed version.

reset([keep])

Reset the object to a clean post-init state.

set_params(**params)

Set the parameters of this estimator.

set_tags(**tag_dict)

Set dynamic tags to given values.

transform(X[, y])

Transform X and return a transformed version.

clone(random_state=None)[source]

Obtain a clone of the object with the same hyperparameters.

A clone is a different object without shared references, in post-init state. This function is equivalent to returning sklearn.clone of self. Equal in value to type(self)(**self.get_params(deep=False)).

Parameters:
random_stateint, RandomState instance, or None, default=None

Sets the random state of the clone. If None, the random state is not set. If int, random_state is the seed used by the random number generator. If RandomState instance, random_state is the random number generator.

Returns:
estimatorobject

Instance of type(self), clone of self (see above)

fit(X, y=None)[source]

Fit transformer to X, optionally using y if supervised.

State change:

Changes state to “fitted”.

Writes to self: _is_fitted : flag is set to True. model attributes (ending in “_”) : dependent on estimator

Parameters:
Xnp.ndarray or list

Input data, any number of channels, equal length series of shape ( n_cases, n_channels, n_timepoints) or list of numpy arrays (any number of channels, unequal length series) of shape [n_cases], 2D np.array (n_channels, n_timepoints_i), where n_timepoints_i is length of series i. Other types are allowed and converted into one of the above.

Different estimators have different capabilities to handle different types of input. If self.get_tag(“capability:multivariate”)` is False, they cannot handle multivariate series. If self.get_tag( "capability:unequal_length") is False, they cannot handle unequal length input. In both situations, a ValueError is raised if X has a characteristic that the estimator does not have the capability to handle.

Data to fit transform to, of valid collection type.

ynp.ndarray, default=None

1D np.array of float or str, of shape (n_cases) - class labels (ground truth) for fitting indices corresponding to instance indices in X. If None, no labels are used in fitting.

Returns:
selfa fitted instance of the estimator
fit_transform(X, y=None)[source]

Fit to data, then transform it.

Fits the transformer to X and y and returns a transformed version of X.

State change:

Changes state to “fitted”.

Writes to self: _is_fitted : flag is set to True. model attributes (ending in “_”) : dependent on estimator.

Parameters:
Xnp.ndarray or list

Input data, any number of channels, equal length series of shape ( n_cases, n_channels, n_timepoints) or list of numpy arrays (any number of channels, unequal length series) of shape [n_cases], 2D np.array (n_channels, n_timepoints_i), where n_timepoints_i is length of series i. Other types are allowed and converted into one of the above.

Different estimators have different capabilities to handle different types of input. If self.get_tag(“capability:multivariate”)` is False, they cannot handle multivariate series. If self.get_tag( "capability:unequal_length") is False, they cannot handle unequal length input. In both situations, a ValueError is raised if X has a characteristic that the estimator does not have the capability to handle.

Data to fit transform to, of valid collection type.

ynp.ndarray, default=None

1D np.array of float or str, of shape (n_cases) - class labels (ground truth) for fitting indices corresponding to instance indices in X. If None, no labels are used in fitting.

Returns:
transformed version of X
classmethod get_class_tag(tag_name, raise_error=True, tag_value_default=None)[source]

Get tag value from estimator class (only class tags).

Parameters:
tag_namestr

Name of tag value.

raise_errorbool, default=True

Whether a ValueError is raised when the tag is not found.

tag_value_defaultany type, default=None

Default/fallback value if tag is not found and error is not raised.

Returns:
tag_value

Value of the tag_name tag in cls. If not found, returns an error if raise_error is True, otherwise it returns tag_value_default.

Raises:
ValueError

if raise_error is True and tag_name is not in self.get_tags().keys()

Examples

>>> from aeon.classification import DummyClassifier
>>> DummyClassifier.get_class_tag("capability:multivariate")
True
classmethod get_class_tags()[source]

Get class tags from estimator class and all its parent classes.

Returns:
collected_tagsdict

Dictionary of tag name and tag value pairs. Collected from _tags class attribute via nested inheritance. These are not overridden by dynamic tags set by set_tags or class __init__ calls.

get_fitted_params(deep=True)[source]

Get fitted parameters.

State required:

Requires state to be “fitted”.

Parameters:
deepbool, default=True

If True, will return the fitted parameters for this estimator and contained subobjects that are estimators.

Returns:
fitted_paramsdict

Fitted parameter names mapped to their values.

get_metadata_routing()[source]

Sklearn metadata routing.

Not supported by aeon estimators.

get_params(deep=True)[source]

Get parameters for this estimator.

Returns the parameters given in the constructor as well as the estimators contained within the composable estimator if deep.

Parameters:
deepbool, default=True

If True, will return the parameters for this estimator and contained subobjects that are estimators.

Returns:
paramsmapping of string to any

Parameter names mapped to their values.

get_tag(tag_name, raise_error=True, tag_value_default=None)[source]

Get tag value from estimator class.

Includes dynamic and overridden tags.

Parameters:
tag_namestr

Name of tag to be retrieved.

raise_errorbool, default=True

Whether a ValueError is raised when the tag is not found.

tag_value_defaultany type, default=None

Default/fallback value if tag is not found and error is not raised.

Returns:
tag_value

Value of the tag_name tag in self. If not found, returns an error if raise_error is True, otherwise it returns tag_value_default.

Raises:
ValueError

if raise_error is True and tag_name is not in self.get_tags().keys()

Examples

>>> from aeon.classification import DummyClassifier
>>> d = DummyClassifier()
>>> d.get_tag("capability:multivariate")
True
get_tags()[source]

Get tags from estimator.

Includes dynamic and overridden tags.

Returns:
collected_tagsdict

Dictionary of tag name and tag value pairs. Collected from _tags class attribute via nested inheritance and then any overridden and new tags from __init__ or set_tags.

inverse_transform(X, y=None)[source]

Inverse transform X and return an inverse transformed version.

Currently it is assumed that only transformers with tags

“input_data_type”=”Series”, “output_data_type”=”Series”,

can have an inverse_transform.

State required:

Requires state to be “fitted”.

Accesses in self:

_is_fitted : must be True fitted model attributes (ending in “_”) : accessed by _inverse_transform

Parameters:
Xnp.ndarray or list

Input data, any number of channels, equal length series of shape ( n_cases, n_channels, n_timepoints) or list of numpy arrays (any number of channels, unequal length series) of shape [n_cases], 2D np.array (n_channels, n_timepoints_i), where n_timepoints_i is length of series i. Other types are allowed and converted into one of the above.

Different estimators have different capabilities to handle different types of input. If self.get_tag(“capability:multivariate”)` is False, they cannot handle multivariate series. If self.get_tag( "capability:unequal_length") is False, they cannot handle unequal length input. In both situations, a ValueError is raised if X has a characteristic that the estimator does not have the capability to handle.

Data to fit transform to, of valid collection type.

ynp.ndarray, default=None

1D np.array of float or str, of shape (n_cases) - class labels (ground truth) for fitting indices corresponding to instance indices in X. If None, no labels are used in fitting.

Returns:
inverse transformed version of X

of the same type as X

reset(keep=None)[source]

Reset the object to a clean post-init state.

After a self.reset() call, self is equal or similar in value to type(self)(**self.get_params(deep=False)), assuming no other attributes were kept using keep.

Detailed behaviour:
removes any object attributes, except:

hyper-parameters (arguments of __init__) object attributes containing double-underscores, i.e., the string “__”

runs __init__ with current values of hyperparameters (result of get_params)

Not affected by the reset are:

object attributes containing double-underscores class and object methods, class attributes any attributes specified in the keep argument

Parameters:
keepNone, str, or list of str, default=None

If None, all attributes are removed except hyperparameters. If str, only the attribute with this name is kept. If list of str, only the attributes with these names are kept.

Returns:
selfobject

Reference to self.

set_params(**params)[source]

Set the parameters of this estimator.

Valid parameter keys can be listed with get_params(). Note that you can directly set the parameters of the estimators contained composable estimator using their assigned name.

Parameters:
**kwargsdict

Parameters of this estimator or parameters of estimators contained within the composable estimator. Parameters of the estimators may be set using its name and the parameter name separated by a ‘__’.

Returns:
selfestimator instance

Estimator instance.

set_tags(**tag_dict)[source]

Set dynamic tags to given values.

Parameters:
**tag_dictdict

Dictionary of tag name and tag value pairs.

Returns:
selfobject

Reference to self.

transform(X, y=None)[source]

Transform X and return a transformed version.

State required:

Requires state to be “fitted”.

Accesses in self: _is_fitted : must be True fitted model attributes (ending in “_”) : must be set, accessed by _transform

Parameters:
Xnp.ndarray or list

Input data, any number of channels, equal length series of shape ( n_cases, n_channels, n_timepoints) or list of numpy arrays (any number of channels, unequal length series) of shape [n_cases], 2D np.array (n_channels, n_timepoints_i), where n_timepoints_i is length of series i. Other types are allowed and converted into one of the above.

Different estimators have different capabilities to handle different types of input. If self.get_tag(“capability:multivariate”)` is False, they cannot handle multivariate series. If self.get_tag( "capability:unequal_length") is False, they cannot handle unequal length input. In both situations, a ValueError is raised if X has a characteristic that the estimator does not have the capability to handle.

Data to fit transform to, of valid collection type.

ynp.ndarray, default=None

1D np.array of float or str, of shape (n_cases) - class labels (ground truth) for fitting indices corresponding to instance indices in X. If None, no labels are used in fitting.

Returns:
transformed version of X