BaseDeepRegressor¶
- class BaseDeepRegressor(batch_size=40, last_file_name='last_model')[source]¶
Abstract base class for deep learning time series regression.
The base classifier provides a deep learning default method for _predict, and provides a new abstract method for building a model.
- Parameters:
- batch_sizeint, default = 40
training batch size for the model
- last_file_namestr, default = “last_model”
The name of the file of the last model, used only if save_last_model_to_file is used
- Attributes:
is_fitted
Whether
fit
has been called.
Methods
build_model
(input_shape)Construct a compiled, un-trained, keras model that is ready for training.
Check if the estimator has been fitted.
clone
()Obtain a clone of the object with same hyper-parameters.
clone_tags
(estimator[, tag_names])Clone/mirror tags from another estimator as dynamic override.
create_test_instance
([parameter_set, ...])Construct Estimator instance if possible.
create_test_instances_and_names
([parameter_set])Create list of all test instances and a list of names for them.
fit
(X, y)Fit time series regressor to training data.
fit_predict
(X, y)Fits the regressor and predicts class labels for X.
get_class_tag
(tag_name[, tag_value_default, ...])Get tag value from estimator class (only class tags).
Get class tags from estimator class and all its parent classes.
get_fitted_params
([deep])Get fitted parameters.
Get metadata routing of this object.
Get parameter defaults for the object.
Get parameter names for the object.
get_params
([deep])Get parameters for this estimator.
get_tag
(tag_name[, tag_value_default, ...])Get tag value from estimator class.
get_tags
()Get tags from estimator class.
get_test_params
([parameter_set])Return testing parameter settings for the estimator.
Check if the object is composite.
load_from_path
(serial)Load object from file location.
load_from_serial
(serial)Load object from serialized memory container.
load_model
(model_path)Load a pre-trained keras model instead of fitting.
predict
(X)Predicts target variable for time series in X.
reset
()Reset the object to a clean post-init state.
save
([path])Save serialized self to bytes-like object or to (.zip) file.
save_last_model_to_file
([file_path])Save the last epoch of the trained deep learning model.
score
(X, y[, metric, metric_params])Scores predicted labels against ground truth labels on X.
set_params
(**params)Set the parameters of this object.
set_score_request
(*[, metric, metric_params])Request metadata passed to the
score
method.set_tags
(**tag_dict)Set dynamic tags to given values.
summary
()Summary function to return the losses/metrics for model fit.
- abstract build_model(input_shape)[source]¶
Construct a compiled, un-trained, keras model that is ready for training.
- Parameters:
- input_shapetuple
The shape of the data fed into the input layer
- Returns:
- A compiled Keras Model
- summary()[source]¶
Summary function to return the losses/metrics for model fit.
- Returns:
- history: dict or None,
Dictionary containing model’s train/validation losses and metrics
- save_last_model_to_file(file_path='./')[source]¶
Save the last epoch of the trained deep learning model.
- Parameters:
- file_pathstr, default = “./”
The directory where the model will be saved
- Returns:
- None
- load_model(model_path)[source]¶
Load a pre-trained keras model instead of fitting.
When calling this function, all functionalities can be used such as predict etc. with the loaded model.
- Parameters:
- model_pathstr (path including model name and extension)
The directory where the model will be saved including the model name with a “.keras” extension. Example: model_path=”path/to/file/best_model.keras”
- Returns:
- None
- check_is_fitted()[source]¶
Check if the estimator has been fitted.
- Raises:
- NotFittedError
If the estimator has not been fitted yet.
- clone()[source]¶
Obtain a clone of the object with same hyper-parameters.
A clone is a different object without shared references, in post-init state. This function is equivalent to returning sklearn.clone of self. Equal in value to
type(self)(**self.get_params(deep=False))
.- Returns:
- instance of
type(self)
, clone of self (see above)
- instance of
- clone_tags(estimator, tag_names=None)[source]¶
Clone/mirror tags from another estimator as dynamic override.
- Parameters:
- estimatorobject
Estimator inheriting from :class:BaseEstimator.
- tag_namesstr or list of str, default = None
Names of tags to clone. If None then all tags in estimator are used as tag_names.
- Returns:
- Self
Reference to self.
Notes
Changes object state by setting tag values in tag_set from estimator as dynamic tags in self.
- classmethod create_test_instance(parameter_set='default', return_first=True)[source]¶
Construct Estimator instance if possible.
Calls the get_test_params method and returns an instance or list of instances using the returned dict or list of dict.
- Parameters:
- parameter_setstr, default=”default”
Name of the set of test parameters to return, for use in tests. If no special parameters are defined for a value, will return “default” set.
- return_firstbool, default=True
If True, return the first instance of the list of instances. If False, return the list of instances.
- Returns:
- instanceBaseEstimator or list of BaseEstimator
Instance of the class with default parameters. If return_first is False, returns list of instances.
- classmethod create_test_instances_and_names(parameter_set='default')[source]¶
Create list of all test instances and a list of names for them.
- Parameters:
- parameter_setstr, default=”default”
Name of the set of test parameters to return, for use in tests. If no special parameters are defined for a value, will return “default” set.
- Returns:
- objslist of instances of cls
i-th instance is cls(**cls.get_test_params()[i]).
- nameslist of str, same length as objs
i-th element is name of i-th instance of obj in tests convention is {cls.__name__}-{i} if more than one instance otherwise {cls.__name__}.
- parameter_setstr, default=”default”
Name of the set of test parameters to return, for use in tests. If no special parameters are defined for a value, will return “default” set.
- fit(X, y) BaseCollectionEstimator [source]¶
Fit time series regressor to training data.
- Parameters:
- Xnp.ndarray or list
Input data, any number of channels, equal length series of shape
( n_cases, n_channels, n_timepoints)
or 2D np.array (univariate, equal length series) of shape(n_cases, n_timepoints)
or list of numpy arrays (any number of channels, unequal length series) of shape[n_cases]
, 2D np.array(n_channels, n_timepoints_i)
, wheren_timepoints_i
is length of seriesi
. Other types are allowed and converted into one of the above.Different estimators have different capabilities to handle different types of input. If self.get_tag(“capability:multivariate”)` is False, they cannot handle multivariate series, so either
n_channels == 1
is true or X is 2D of shape(n_cases, n_timepoints)
. Ifself.get_tag( "capability:unequal_length")
is False, they cannot handle unequal length input. In both situations, aValueError
is raised if X has a characteristic that the estimator does not have the capability for is passed.- ynp.ndarray
1D np.array of float, of shape
(n_cases)
- regression targets (ground truth) for fitting indices corresponding to instance indices in X.
- Returns:
- selfBaseRegressor
Reference to self.
Notes
Changes state by creating a fitted model that updates attributes ending in “_” and sets is_fitted flag to True.
- fit_predict(X, y) ndarray [source]¶
Fits the regressor and predicts class labels for X.
fit_predict produces prediction estimates using just the train data. By default, this is through 10x cross validation, although some estimators may utilise specialist techniques such as out-of-bag estimates or leave-one-out cross-validation.
Regressors which override _fit_predict will have the
capability:train_estimate
tag set to True.Generally, this will not be the same as fitting on the whole train data then making train predictions. To do this, you should call fit(X,y).predict(X)
- Parameters:
- Xnp.ndarray or list
Input data, any number of channels, equal length series of shape
( n_cases, n_channels, n_timepoints)
or 2D np.array (univariate, equal length series) of shape(n_cases, n_timepoints)
or list of numpy arrays (any number of channels, unequal length series) of shape[n_cases]
, 2D np.array(n_channels, n_timepoints_i)
, wheren_timepoints_i
is length of seriesi
. other types are allowed and converted into one of the above.Different estimators have different capabilities to handle different types of input. If self.get_tag(“capability:multivariate”)` is False, they cannot handle multivariate series, so either
n_channels == 1
is true or X is 2D of shape(n_cases, n_timepoints)
. Ifself.get_tag( "capability:unequal_length")
is False, they cannot handle unequal length input. In both situations, aValueError
is raised if X has a characteristic that the estimator does not have the capability for is passed.- ynp.ndarray
1D np.array of float, of shape
(n_cases)
- regression targets (ground truth) for fitting indices corresponding to instance indices in X.
- Returns:
- predictionsnp.ndarray
1D np.array of float, of shape (n_cases) - predicted regression labels indices correspond to instance indices in X
- classmethod get_class_tag(tag_name, tag_value_default=None, raise_error=False)[source]¶
Get tag value from estimator class (only class tags).
- Parameters:
- tag_namestr
Name of tag value.
- tag_value_defaultany type
Default/fallback value if tag is not found.
- raise_errorbool
Whether a ValueError is raised when the tag is not found.
- Returns:
- tag_value
Value of the tag_name tag in self. If not found, returns an error if raise_error is True, otherwise it returns tag_value_default.
- Raises:
- ValueError if raise_error is True i.e. if tag_name is not in self.get_tags(
- ).keys()
See also
get_tag
Get a single tag from an object.
get_tags
Get all tags from an object.
get_class_tag
Get a single tag from a class.
Examples
>>> from aeon.classification import DummyClassifier >>> DummyClassifier.get_class_tag("capability:multivariate") True
- classmethod get_class_tags()[source]¶
Get class tags from estimator class and all its parent classes.
- Returns:
- collected_tagsdict
Dictionary of tag name : tag value pairs. Collected from _tags class attribute via nested inheritance. NOT overridden by dynamic tags set by set_tags or mirror_tags.
- get_fitted_params(deep=True)[source]¶
Get fitted parameters.
- State required:
Requires state to be “fitted”.
- Parameters:
- deepbool, default=True
Whether to return fitted parameters of components.
If True, will return a dict of parameter name : value for this object, including fitted parameters of fittable components (= BaseEstimator-valued parameters).
If False, will return a dict of parameter name : value for this object, but not include fitted parameters of components.
- Returns:
- fitted_paramsdict with str-valued keys
Dictionary of fitted parameters, paramname : paramvalue keys-value pairs include:
always: all fitted parameters of this object, as via
get_param_names
values are fitted parameter value for that key, of this objectif
deep=True
, also contains keys/value pairs of component parameters parameters of components are indexed as[componentname]__[paramname]
all parameters ofcomponentname
appear asparamname
with its valueif
deep=True
, also contains arbitrary levels of component recursion, e.g.,[componentname]__[componentcomponentname]__[paramname]
, etc.
- get_metadata_routing()[source]¶
Get metadata routing of this object.
Please check User Guide on how the routing mechanism works.
- Returns:
- routingMetadataRequest
A
MetadataRequest
encapsulating routing information.
- classmethod get_param_defaults()[source]¶
Get parameter defaults for the object.
- Returns:
- default_dict: dict with str keys
keys are all parameters of cls that have a default defined in __init__ values are the defaults, as defined in __init__.
- classmethod get_param_names()[source]¶
Get parameter names for the object.
- Returns:
- param_names: list of str, alphabetically sorted list of parameter names of cls
- get_params(deep=True)[source]¶
Get parameters for this estimator.
- Parameters:
- deepbool, default=True
If True, will return the parameters for this estimator and contained subobjects that are estimators.
- Returns:
- paramsdict
Parameter names mapped to their values.
- get_tag(tag_name, tag_value_default=None, raise_error=True)[source]¶
Get tag value from estimator class.
Uses dynamic tag overrides.
- Parameters:
- tag_namestr
Name of tag to be retrieved.
- tag_value_defaultany type, default=None
Default/fallback value if tag is not found.
- raise_errorbool
Whether a ValueError is raised when the tag is not found.
- Returns:
- tag_value
Value of the tag_name tag in self. If not found, returns an error if raise_error is True, otherwise it returns tag_value_default.
- Raises:
- ValueError if raise_error is True i.e. if tag_name is not in self.get_tags(
- ).keys()
See also
get_tags
Get all tags from an object.
get_clas_tags
Get all tags from a class.
get_class_tag
Get a single tag from a class.
Examples
>>> from aeon.classification import DummyClassifier >>> d = DummyClassifier() >>> d.get_tag("capability:multivariate") True
- get_tags()[source]¶
Get tags from estimator class.
Includes the dynamic tag overrides.
- Returns:
- dict
Dictionary of tag name : tag value pairs. Collected from _tags class attribute via nested inheritance and then any overrides and new tags from _tags_dynamic object attribute.
See also
get_tag
Get a single tag from an object.
get_class_tags
Get all tags from a class.
get_class_tag
Get a single tag from a class.
Examples
>>> from aeon.classification import DummyClassifier >>> d = DummyClassifier() >>> tags = d.get_tags()
- classmethod get_test_params(parameter_set='default')[source]¶
Return testing parameter settings for the estimator.
- Parameters:
- parameter_setstr, default=”default”
Name of the set of test parameters to return, for use in tests. If no special parameters are defined for a value, will return “default” set.
- Returns:
- paramsdict or list of dict, default = {}
Parameters to create testing instances of the class. Each dict are parameters to construct an “interesting” test instance, i.e., MyClass(**params) or MyClass(**params[i]) creates a valid test instance. create_test_instance uses the first (or only) dictionary in params.
- is_composite()[source]¶
Check if the object is composite.
A composite object is an object which contains objects, as parameters. Called on an instance, since this may differ by instance.
- Returns:
- composite: bool
Whether self contains a parameter which is BaseObject.
- classmethod load_from_path(serial)[source]¶
Load object from file location.
- Parameters:
- serialobject
Result of ZipFile(path).open(“object).
- Returns:
- deserialized self resulting in output at path, of cls.save(path)
- classmethod load_from_serial(serial)[source]¶
Load object from serialized memory container.
- Parameters:
- serialobject
First element of output of cls.save(None).
- Returns:
- deserialized self resulting in output serial, of cls.save(None).
- predict(X) ndarray [source]¶
Predicts target variable for time series in X.
- Parameters:
- Xnp.ndarray or list
Input data, any number of channels, equal length series of shape
( n_cases, n_channels, n_timepoints)
or 2D np.array (univariate, equal length series) of shape(n_cases, n_timepoints)
or list of numpy arrays (any number of channels, unequal length series) of shape[n_cases]
, 2D np.array(n_channels, n_timepoints_i)
, wheren_timepoints_i
is length of seriesi
other types are allowed and converted into one of the above.Different estimators have different capabilities to handle different types of input. If self.get_tag(“capability:multivariate”)` is False, they cannot handle multivariate series, so either
n_channels == 1
is true or X is 2D of shape(n_cases, n_timepoints)
. Ifself.get_tag( "capability:unequal_length")
is False, they cannot handle unequal length input. In both situations, aValueError
is raised if X has a characteristic that the estimator does not have the capability for is passed.
- Returns:
- predictionsnp.ndarray
1D np.array of float, of shape (n_cases) - predicted regression labels indices correspond to instance indices in X
- reset()[source]¶
Reset the object to a clean post-init state.
Equivalent to sklearn.clone but overwrites self. After
self.reset()
call, self is equal in value totype(self)(**self.get_params(deep=False))
Detail behaviour: removes any object attributes, except:
hyper-parameters = arguments of
__init__
object attributes containing double-underscores, i.e., the string “__”runs
__init__
with current values of hyper-parameters (result of get_params)Not affected by the reset are: object attributes containing double-underscores class and object methods, class attributes
- save(path=None)[source]¶
Save serialized self to bytes-like object or to (.zip) file.
Behaviour: if path is None, returns an in-memory serialized self if path is a file location, stores self at that location as a zip file
saved files are zip files with following contents: _metadata - contains class of self, i.e., type(self) _obj - serialized self. This class uses the default serialization (pickle).
- Parameters:
- pathNone or file location (str or Path).
if None, self is saved to an in-memory object if file location, self is saved to that file location. If:
path=”estimator” then a zip file estimator.zip will be made at cwd. path=”/home/stored/estimator” then a zip file estimator.zip will be stored in /home/stored/.
- Returns:
- if path is None - in-memory serialized self
- if path is file location - ZipFile with reference to the file.
- score(X, y, metric='r2', metric_params=None) float [source]¶
Scores predicted labels against ground truth labels on X.
- Parameters:
- Xnp.ndarray or list
Input data, any number of channels, equal length series of shape
( n_cases, n_channels, n_timepoints)
or 2D np.array (univariate, equal length series) of shape(n_cases, n_timepoints)
or list of numpy arrays (any number of channels, unequal length series) of shape[n_cases]
, 2D np.array(n_channels, n_timepoints_i)
, wheren_timepoints_i
is length of seriesi
. other types are allowed and converted into one of the above.Different estimators have different capabilities to handle different types of input. If self.get_tag(“capability:multivariate”)` is False, they cannot handle multivariate series, so either
n_channels == 1
is true or X is 2D of shape(n_cases, n_timepoints)
. Ifself.get_tag( "capability:unequal_length")
is False, they cannot handle unequal length input. In both situations, aValueError
is raised if X has a characteristic that the estimator does not have the capability for is passed.- ynp.ndarray
1D np.array of float, of shape
(n_cases)
- regression targets (ground truth) for fitting indices corresponding to instance indices in X.- metricUnion[str, callable], default=”r2”,
Defines the scoring metric to test the fit of the model. For supported strings arguments, check sklearn.metrics.get_scorer_names.
- metric_paramsdict, default=None,
Contains parameters to be passed to the scoring function. If None, no parameters are passed.
- Returns:
- scorefloat
MSE score of predict(X) vs y
- set_params(**params)[source]¶
Set the parameters of this object.
The method works on simple estimators as well as on nested objects. The latter have parameters of the form
<component>__<parameter>
so that it’s possible to update each component of a nested object.- Parameters:
- **paramsdict
BaseObject parameters
- Returns:
- selfreference to self (after parameters have been set)
- set_score_request(*, metric: bool | None | str = '$UNCHANGED$', metric_params: bool | None | str = '$UNCHANGED$') BaseDeepRegressor [source]¶
Request metadata passed to the
score
method.Note that this method is only relevant if
enable_metadata_routing=True
(seesklearn.set_config
). Please see User Guide on how the routing mechanism works.The options for each parameter are:
True
: metadata is requested, and passed toscore
if provided. The request is ignored if metadata is not provided.False
: metadata is not requested and the meta-estimator will not pass it toscore
.None
: metadata is not requested, and the meta-estimator will raise an error if the user provides it.str
: metadata should be passed to the meta-estimator with this given alias instead of the original name.
The default (
sklearn.utils.metadata_routing.UNCHANGED
) retains the existing request. This allows you to change the request for some parameters and not others.Added in version 1.3.
Note
This method is only relevant if this estimator is used as a sub-estimator of a meta-estimator, e.g. used inside a
Pipeline
. Otherwise it has no effect.- Parameters:
- metricstr, True, False, or None, default=sklearn.utils.metadata_routing.UNCHANGED
Metadata routing for
metric
parameter inscore
.- metric_paramsstr, True, False, or None, default=sklearn.utils.metadata_routing.UNCHANGED
Metadata routing for
metric_params
parameter inscore
.
- Returns:
- selfobject
The updated object.