ElbowClassPairwise¶
- class ElbowClassPairwise(distance: str = 'euclidean', prototype_type: str = 'mad', mean_center: bool = False)[source]¶
Elbow Class Pairwise (ECP) transformer to select a subset of channels.
Overview: From the input of multivariate time series data, create a distance matrix [1] by calculating the distance between each class centroid. The ECP selects the subset of channels using the elbow method that maximizes the distance between each class centroids pair across all channels.
Note: Channels, variables, dimensions, features are used interchangeably in literature.
- Parameters:
- distancestr, default = “euclidean”
Distance metric to use for creating the class prototype.
- prototype_typestr, default = “mad”
Type of class prototype to use for representing a class. Options: [‘mean’, ‘median’, ‘mad’].
- mean_centerbool, default = False
If True, mean centering is applied to the class prototype.
- Attributes:
- distance_frameDataFrame
Distance matrix between class prototypes.
- channels_selected_list
List of selected channels.
- rank: list
Rank of channels based on the distance between class prototypes.
- prototypeDataFrame
A multivariate time series representation for entire dataset.
Notes
More details on class prototype can be found in [1] and [2].
Original repository: 1. https://github.com/mlgig/Channel-Selection-MTSC 2. https://github.com/mlgig/ChannelSelectionMTSC
References
..[1]: Bhaskar Dhariyal et al. “Fast Channel Selection for Scalable Multivariate Time Series Classification.” AALTD, ECML-PKDD, Springer, 2021 ..[2]: Bhaskar Dhariyal et al. “Scalable Classifier-Agnostic Channel Selection for Multivariate Time Series Classification”, DAMI, ECML, Springer, 2023
Examples
>>> from aeon.transformations.collection.channel_selection import ElbowClassPairwise >>> import numpy as np >>> X = np.random.random((20,6,30)) >>> y = np.array([1,2,1,2,1,2,1,2,1,2,1,2,1,2,1,2,1,2,1,2]) >>> cs = ElbowClassPairwise() >>> cs.fit(X, y) ElbowClassPairwise() >>> Xt = cs.transform(X)
Methods
Check if the estimator has been fitted.
clone
()Obtain a clone of the object with same hyper-parameters.
clone_tags
(estimator[, tag_names])Clone/mirror tags from another estimator as dynamic override.
create_test_instance
([parameter_set, ...])Construct Estimator instance if possible.
create_test_instances_and_names
([parameter_set])Create list of all test instances and a list of names for them.
fit
(X[, y])Fit transformer to X, optionally using y if supervised.
fit_transform
(X[, y])Fit to data, then transform it.
get_class_tag
(tag_name[, tag_value_default, ...])Get tag value from estimator class (only class tags).
Get class tags from estimator class and all its parent classes.
get_fitted_params
([deep])Get fitted parameters.
Get metadata routing of this object.
Get parameter defaults for the object.
Get parameter names for the object.
get_params
([deep])Get parameters for this estimator.
get_tag
(tag_name[, tag_value_default, ...])Get tag value from estimator class.
get_tags
()Get tags from estimator class.
get_test_params
([parameter_set])Return testing parameter settings for the estimator.
inverse_transform
(X[, y])Inverse transform X and return an inverse transformed version.
Check if the object is composite.
load_from_path
(serial)Load object from file location.
load_from_serial
(serial)Load object from serialized memory container.
reset
()Reset the object to a clean post-init state.
save
([path])Save serialized self to bytes-like object or to (.zip) file.
set_params
(**params)Set the parameters of this object.
set_tags
(**tag_dict)Set dynamic tags to given values.
transform
(X[, y])Transform X and return a transformed version.
update
(X[, y, update_params])Update transformer with X, optionally y.
- check_is_fitted()[source]¶
Check if the estimator has been fitted.
- Raises:
- NotFittedError
If the estimator has not been fitted yet.
- clone()[source]¶
Obtain a clone of the object with same hyper-parameters.
A clone is a different object without shared references, in post-init state. This function is equivalent to returning sklearn.clone of self. Equal in value to
type(self)(**self.get_params(deep=False))
.- Returns:
- instance of
type(self)
, clone of self (see above)
- instance of
- clone_tags(estimator, tag_names=None)[source]¶
Clone/mirror tags from another estimator as dynamic override.
- Parameters:
- estimatorobject
Estimator inheriting from :class:BaseEstimator.
- tag_namesstr or list of str, default = None
Names of tags to clone. If None then all tags in estimator are used as tag_names.
- Returns:
- Self
Reference to self.
Notes
Changes object state by setting tag values in tag_set from estimator as dynamic tags in self.
- classmethod create_test_instance(parameter_set='default', return_first=True)[source]¶
Construct Estimator instance if possible.
Calls the get_test_params method and returns an instance or list of instances using the returned dict or list of dict.
- Parameters:
- parameter_setstr, default=”default”
Name of the set of test parameters to return, for use in tests. If no special parameters are defined for a value, will return “default” set.
- return_firstbool, default=True
If True, return the first instance of the list of instances. If False, return the list of instances.
- Returns:
- instanceBaseEstimator or list of BaseEstimator
Instance of the class with default parameters. If return_first is False, returns list of instances.
- classmethod create_test_instances_and_names(parameter_set='default')[source]¶
Create list of all test instances and a list of names for them.
- Parameters:
- parameter_setstr, default=”default”
Name of the set of test parameters to return, for use in tests. If no special parameters are defined for a value, will return “default” set.
- Returns:
- objslist of instances of cls
i-th instance is cls(**cls.get_test_params()[i]).
- nameslist of str, same length as objs
i-th element is name of i-th instance of obj in tests convention is {cls.__name__}-{i} if more than one instance otherwise {cls.__name__}.
- parameter_setstr, default=”default”
Name of the set of test parameters to return, for use in tests. If no special parameters are defined for a value, will return “default” set.
- fit(X, y=None)[source]¶
Fit transformer to X, optionally using y if supervised.
- State change:
Changes state to “fitted”.
Writes to self: _is_fitted : flag is set to True. model attributes (ending in “_”) : dependent on estimator
- Parameters:
- Xnp.ndarray or list
Input data, any number of channels, equal length series of shape
( n_cases, n_channels, n_timepoints)
or list of numpy arrays (any number of channels, unequal length series) of shape[n_cases]
, 2D np.array(n_channels, n_timepoints_i)
, wheren_timepoints_i
is length of seriesi
. Other types are allowed and converted into one of the above.Different estimators have different capabilities to handle different types of input. If self.get_tag(“capability:multivariate”)` is False, they cannot handle multivariate series. If
self.get_tag( "capability:unequal_length")
is False, they cannot handle unequal length input. In both situations, aValueError
is raised if X has a characteristic that the estimator does not have the capability to handle.Data to fit transform to, of valid collection type.
- ynp.ndarray, default=None
1D np.array of float or str, of shape
(n_cases)
- class labels (ground truth) for fitting indices corresponding to instance indices in X. If None, no labels are used in fitting.
- Returns:
- selfa fitted instance of the estimator
- fit_transform(X, y=None)[source]¶
Fit to data, then transform it.
Fits the transformer to X and y and returns a transformed version of X.
- State change:
Changes state to “fitted”.
Writes to self: _is_fitted : flag is set to True. _X : X, coerced copy of X, if remember_data tag is True
possibly coerced to inner type or update_data compatible type by reference, when possible
model attributes (ending in “_”) : dependent on estimator.
- Parameters:
- Xnp.ndarray or list
Input data, any number of channels, equal length series of shape
( n_cases, n_channels, n_timepoints)
or list of numpy arrays (any number of channels, unequal length series) of shape[n_cases]
, 2D np.array(n_channels, n_timepoints_i)
, wheren_timepoints_i
is length of seriesi
. Other types are allowed and converted into one of the above.Different estimators have different capabilities to handle different types of input. If self.get_tag(“capability:multivariate”)` is False, they cannot handle multivariate series. If
self.get_tag( "capability:unequal_length")
is False, they cannot handle unequal length input. In both situations, aValueError
is raised if X has a characteristic that the estimator does not have the capability to handle.Data to fit transform to, of valid collection type.
- ynp.ndarray, default=None
1D np.array of float or str, of shape
(n_cases)
- class labels (ground truth) for fitting indices corresponding to instance indices in X. If None, no labels are used in fitting.
- Returns:
- transformed version of X
- classmethod get_class_tag(tag_name, tag_value_default=None, raise_error=False)[source]¶
Get tag value from estimator class (only class tags).
- Parameters:
- tag_namestr
Name of tag value.
- tag_value_defaultany type
Default/fallback value if tag is not found.
- raise_errorbool
Whether a ValueError is raised when the tag is not found.
- Returns:
- tag_value
Value of the tag_name tag in self. If not found, returns an error if raise_error is True, otherwise it returns tag_value_default.
- Raises:
- ValueError if raise_error is True i.e. if tag_name is not in self.get_tags(
- ).keys()
See also
get_tag
Get a single tag from an object.
get_tags
Get all tags from an object.
get_class_tag
Get a single tag from a class.
Examples
>>> from aeon.classification import DummyClassifier >>> DummyClassifier.get_class_tag("capability:multivariate") True
- classmethod get_class_tags()[source]¶
Get class tags from estimator class and all its parent classes.
- Returns:
- collected_tagsdict
Dictionary of tag name : tag value pairs. Collected from _tags class attribute via nested inheritance. NOT overridden by dynamic tags set by set_tags or mirror_tags.
- get_fitted_params(deep=True)[source]¶
Get fitted parameters.
- State required:
Requires state to be “fitted”.
- Parameters:
- deepbool, default=True
Whether to return fitted parameters of components.
If True, will return a dict of parameter name : value for this object, including fitted parameters of fittable components (= BaseEstimator-valued parameters).
If False, will return a dict of parameter name : value for this object, but not include fitted parameters of components.
- Returns:
- fitted_paramsdict with str-valued keys
Dictionary of fitted parameters, paramname : paramvalue keys-value pairs include:
always: all fitted parameters of this object, as via get_param_names values are fitted parameter value for that key, of this object
if deep=True, also contains keys/value pairs of component parameters parameters of components are indexed as [componentname]__[paramname] all parameters of componentname appear as paramname with its value
if deep=True, also contains arbitrary levels of component recursion, e.g., [componentname]__[componentcomponentname]__[paramname], etc
- get_metadata_routing()[source]¶
Get metadata routing of this object.
Please check User Guide on how the routing mechanism works.
- Returns:
- routingMetadataRequest
A
MetadataRequest
encapsulating routing information.
- classmethod get_param_defaults()[source]¶
Get parameter defaults for the object.
- Returns:
- default_dict: dict with str keys
keys are all parameters of cls that have a default defined in __init__ values are the defaults, as defined in __init__.
- classmethod get_param_names()[source]¶
Get parameter names for the object.
- Returns:
- param_names: list of str, alphabetically sorted list of parameter names of cls
- get_params(deep=True)[source]¶
Get parameters for this estimator.
- Parameters:
- deepbool, default=True
If True, will return the parameters for this estimator and contained subobjects that are estimators.
- Returns:
- paramsdict
Parameter names mapped to their values.
- get_tag(tag_name, tag_value_default=None, raise_error=True)[source]¶
Get tag value from estimator class.
Uses dynamic tag overrides.
- Parameters:
- tag_namestr
Name of tag to be retrieved.
- tag_value_defaultany type, default=None
Default/fallback value if tag is not found.
- raise_errorbool
Whether a ValueError is raised when the tag is not found.
- Returns:
- tag_value
Value of the tag_name tag in self. If not found, returns an error if raise_error is True, otherwise it returns tag_value_default.
- Raises:
- ValueError if raise_error is True i.e. if tag_name is not in self.get_tags(
- ).keys()
See also
get_tags
Get all tags from an object.
get_clas_tags
Get all tags from a class.
get_class_tag
Get a single tag from a class.
Examples
>>> from aeon.classification import DummyClassifier >>> d = DummyClassifier() >>> d.get_tag("capability:multivariate") True
- get_tags()[source]¶
Get tags from estimator class.
Includes the dynamic tag overrides.
- Returns:
- dict
Dictionary of tag name : tag value pairs. Collected from _tags class attribute via nested inheritance and then any overrides and new tags from _tags_dynamic object attribute.
See also
get_tag
Get a single tag from an object.
get_class_tags
Get all tags from a class.
get_class_tag
Get a single tag from a class.
Examples
>>> from aeon.classification import DummyClassifier >>> d = DummyClassifier() >>> tags = d.get_tags()
- classmethod get_test_params(parameter_set='default')[source]¶
Return testing parameter settings for the estimator.
- Parameters:
- parameter_setstr, default=”default”
Name of the set of test parameters to return, for use in tests. If no special parameters are defined for a value, will return “default” set.
- Returns:
- paramsdict or list of dict, default = {}
Parameters to create testing instances of the class. Each dict are parameters to construct an “interesting” test instance, i.e., MyClass(**params) or MyClass(**params[i]) creates a valid test instance. create_test_instance uses the first (or only) dictionary in params.
- inverse_transform(X, y=None)[source]¶
Inverse transform X and return an inverse transformed version.
- Currently it is assumed that only transformers with tags
“input_data_type”=”Series”, “output_data_type”=”Series”,
can have an inverse_transform.
- State required:
Requires state to be “fitted”.
- Accesses in self:
_is_fitted : must be True _X : optionally accessed, only available if remember_data tag is True fitted model attributes (ending in “_”) : accessed by _inverse_transform
- Parameters:
- Xnp.ndarray or list
Input data, any number of channels, equal length series of shape
( n_cases, n_channels, n_timepoints)
or list of numpy arrays (any number of channels, unequal length series) of shape[n_cases]
, 2D np.array(n_channels, n_timepoints_i)
, wheren_timepoints_i
is length of seriesi
. Other types are allowed and converted into one of the above.Different estimators have different capabilities to handle different types of input. If self.get_tag(“capability:multivariate”)` is False, they cannot handle multivariate series. If
self.get_tag( "capability:unequal_length")
is False, they cannot handle unequal length input. In both situations, aValueError
is raised if X has a characteristic that the estimator does not have the capability to handle.Data to fit transform to, of valid collection type.
- ynp.ndarray, default=None
1D np.array of float or str, of shape
(n_cases)
- class labels (ground truth) for fitting indices corresponding to instance indices in X. If None, no labels are used in fitting.
- Returns:
- inverse transformed version of X
of the same type as X
- is_composite()[source]¶
Check if the object is composite.
A composite object is an object which contains objects, as parameters. Called on an instance, since this may differ by instance.
- Returns:
- composite: bool
Whether self contains a parameter which is BaseObject.
- classmethod load_from_path(serial)[source]¶
Load object from file location.
- Parameters:
- serialobject
Result of ZipFile(path).open(“object).
- Returns:
- deserialized self resulting in output at path, of cls.save(path)
- classmethod load_from_serial(serial)[source]¶
Load object from serialized memory container.
- Parameters:
- serialobject
First element of output of cls.save(None).
- Returns:
- deserialized self resulting in output serial, of cls.save(None).
- reset()[source]¶
Reset the object to a clean post-init state.
Equivalent to sklearn.clone but overwrites self. After
self.reset()
call, self is equal in value totype(self)(**self.get_params(deep=False))
Detail behaviour: removes any object attributes, except:
hyper-parameters = arguments of
__init__
object attributes containing double-underscores, i.e., the string “__”runs
__init__
with current values of hyper-parameters (result of get_params)Not affected by the reset are: object attributes containing double-underscores class and object methods, class attributes
- save(path=None)[source]¶
Save serialized self to bytes-like object or to (.zip) file.
Behaviour: if path is None, returns an in-memory serialized self if path is a file location, stores self at that location as a zip file
saved files are zip files with following contents: _metadata - contains class of self, i.e., type(self) _obj - serialized self. This class uses the default serialization (pickle).
- Parameters:
- pathNone or file location (str or Path).
if None, self is saved to an in-memory object if file location, self is saved to that file location. If:
path=”estimator” then a zip file estimator.zip will be made at cwd. path=”/home/stored/estimator” then a zip file estimator.zip will be stored in /home/stored/.
- Returns:
- if path is None - in-memory serialized self
- if path is file location - ZipFile with reference to the file.
- set_params(**params)[source]¶
Set the parameters of this object.
The method works on simple estimators as well as on nested objects. The latter have parameters of the form
<component>__<parameter>
so that it’s possible to update each component of a nested object.- Parameters:
- **paramsdict
BaseObject parameters
- Returns:
- selfreference to self (after parameters have been set)
- set_tags(**tag_dict)[source]¶
Set dynamic tags to given values.
- Parameters:
- **tag_dictdict
Dictionary of tag name : tag value pairs.
- Returns:
- Self
Reference to self.
Notes
Changes object state by setting tag values in tag_dict as dynamic tags in self.
- transform(X, y=None)[source]¶
Transform X and return a transformed version.
- State required:
Requires state to be “fitted”.
Accesses in self: _is_fitted : must be True _X : optionally accessed, only available if remember_data tag is True fitted model attributes (ending in “_”) : must be set, accessed by _transform
- Parameters:
- Xnp.ndarray or list
Input data, any number of channels, equal length series of shape
( n_cases, n_channels, n_timepoints)
or list of numpy arrays (any number of channels, unequal length series) of shape[n_cases]
, 2D np.array(n_channels, n_timepoints_i)
, wheren_timepoints_i
is length of seriesi
. Other types are allowed and converted into one of the above.Different estimators have different capabilities to handle different types of input. If self.get_tag(“capability:multivariate”)` is False, they cannot handle multivariate series. If
self.get_tag( "capability:unequal_length")
is False, they cannot handle unequal length input. In both situations, aValueError
is raised if X has a characteristic that the estimator does not have the capability to handle.Data to fit transform to, of valid collection type.
- ynp.ndarray, default=None
1D np.array of float or str, of shape
(n_cases)
- class labels (ground truth) for fitting indices corresponding to instance indices in X. If None, no labels are used in fitting.
- Returns:
- transformed version of X
- update(X, y=None, update_params=True)[source]¶
Update transformer with X, optionally y.
- State required:
Requires state to be “fitted”.
Accesses in self: _is_fitted : must be True _X : accessed by _update and by update_data, if remember_data tag is True fitted model attributes (ending in “_”) : must be set, accessed by _update
Writes to self: _X : updated by values in X, via update_data, if remember_data tag is True fitted model attributes (ending in “_”) : only if update_params=True
type and nature of update are dependent on estimator
- Parameters:
- XSeries or Panel, any supported type
- Data to fit transform to, of python type as follows:
Series: pd.Series, pd.DataFrame, or np.ndarray (1D or 2D) Panel: pd.DataFrame with 2-level MultiIndex, list of pd.DataFrame,
nested pd.DataFrame, or pd.DataFrame in long/wide format
- ySeries or Panel, default=None
Additional data, e.g., labels for transformation
- update_paramsbool, default=True
whether the model is updated. Yes if true, if false, simply skips call. argument exists for compatibility with forecasting module.
- Returns:
- selfa fitted instance of the estimator