plot_boxplot¶
- plot_boxplot(results, labels, relative=False, plot_type='violin', outliers=True, title=None, y_min=None, y_max=None)[source]¶
Plot a box plot.
Each row of results is an independent experiment for each element in names.
- Parameters:
- results: np.array
Scores (either accuracies or errors) of dataset x strategy
- labels: list of estimators
List with names of the estimators
- relative: bool, default = False
If True, the results for a given dataset are divided by the median result.
- plot_type: str, default = “violin”
This function can create four sort of distribution plots: “violin”, “swarm”, “boxplot” or “strip”. “violin” plot features a kernel density estimation of the underlying distribution. “swarm” draws a categorical scatterplot with points adjusted to be non-overlapping. “strip” draws a categorical scatterplot using jitter to reduce overplotting.
- outliers: bool, default = True
Only applies when plot_type is “boxplot”.
- title: str, default = None
Title to be shown in the top of the plot.
- y_min: float, default = None
Min value for the y_axis of the plot.
- y_max: float, default = None
Max value for the y_axis of the plot.
- Returns:
- figmatplotlib.figure.Figure
- axmatplotlib.axes.Axes
Examples
>>> from aeon.visualisation import plot_boxplot >>> from aeon.benchmarking.results_loaders import get_estimator_results_as_array >>> methods = ["IT", "WEASEL-Dilation", "HIVECOTE2", "FreshPRINCE"] >>> results = get_estimator_results_as_array(estimators=methods) >>> plot = plot_boxplot(results[0], methods) >>> plot.show() >>> plot.savefig("boxplot.pdf")