DFTSeriesTransformer

class DFTSeriesTransformer(r=0.5, sort=False)[source]

Filter a times series using Discrete Fourier Approximation (DFT).

Parameters:
rfloat

Proportion of Fourier terms to retain [0, 1]

sortbool

Sort the Fourier terms by amplitude to keep most important terms

Attributes:
is_fitted

Whether fit has been called.

Notes

More information of the NumPy FFT functions used https://numpy.org/doc/stable/reference/routines.fft.html

References

[1]

Cooley, J.W., & Tukey, J.W. (1965). An algorithm for the machine calculation of complex Fourier series. Mathematics of Computation, 19, 297-301.

Examples

>>> import numpy as np
>>> from aeon.transformations.series._dft import DFTSeriesTransformer
>>> X = np.random.random((2, 100)) # Random series length 100
>>> dft = DFTSeriesTransformer()
>>> X_ = dft.fit_transform(X)
>>> X_.shape
(2, 100)

Methods

check_is_fitted()

Check if the estimator has been fitted.

clone()

Obtain a clone of the object with same hyper-parameters.

clone_tags(estimator[, tag_names])

Clone/mirror tags from another estimator as dynamic override.

create_test_instance([parameter_set, ...])

Construct Estimator instance if possible.

create_test_instances_and_names([parameter_set])

Create list of all test instances and a list of names for them.

fit(X[, y, axis])

Fit transformer to X, optionally using y if supervised.

fit_transform(X[, y, axis])

Fit to data, then transform it.

get_class_tag(tag_name[, tag_value_default, ...])

Get tag value from estimator class (only class tags).

get_class_tags()

Get class tags from estimator class and all its parent classes.

get_fitted_params([deep])

Get fitted parameters.

get_metadata_routing()

Get metadata routing of this object.

get_param_defaults()

Get parameter defaults for the object.

get_param_names()

Get parameter names for the object.

get_params([deep])

Get parameters for this estimator.

get_tag(tag_name[, tag_value_default, ...])

Get tag value from estimator class.

get_tags()

Get tags from estimator class.

get_test_params([parameter_set])

Return testing parameter settings for the estimator.

inverse_transform(X[, y, axis])

Inverse transform X and return an inverse transformed version.

is_composite()

Check if the object is composite.

load_from_path(serial)

Load object from file location.

load_from_serial(serial)

Load object from serialized memory container.

reset()

Reset the object to a clean post-init state.

save([path])

Save serialized self to bytes-like object or to (.zip) file.

set_fit_request(*[, axis])

Request metadata passed to the fit method.

set_inverse_transform_request(*[, axis])

Request metadata passed to the inverse_transform method.

set_params(**params)

Set the parameters of this object.

set_tags(**tag_dict)

Set dynamic tags to given values.

set_transform_request(*[, axis])

Request metadata passed to the transform method.

transform(X[, y, axis])

Transform X and return a transformed version.

update(X[, y, update_params, axis])

Update transformer with X, optionally y.

check_is_fitted()[source]

Check if the estimator has been fitted.

Raises:
NotFittedError

If the estimator has not been fitted yet.

clone()[source]

Obtain a clone of the object with same hyper-parameters.

A clone is a different object without shared references, in post-init state. This function is equivalent to returning sklearn.clone of self. Equal in value to type(self)(**self.get_params(deep=False)).

Returns:
instance of type(self), clone of self (see above)
clone_tags(estimator, tag_names=None)[source]

Clone/mirror tags from another estimator as dynamic override.

Parameters:
estimatorobject

Estimator inheriting from :class:BaseEstimator.

tag_namesstr or list of str, default = None

Names of tags to clone. If None then all tags in estimator are used as tag_names.

Returns:
Self

Reference to self.

Notes

Changes object state by setting tag values in tag_set from estimator as dynamic tags in self.

classmethod create_test_instance(parameter_set='default', return_first=True)[source]

Construct Estimator instance if possible.

Calls the get_test_params method and returns an instance or list of instances using the returned dict or list of dict.

Parameters:
parameter_setstr, default=”default”

Name of the set of test parameters to return, for use in tests. If no special parameters are defined for a value, will return “default” set.

return_firstbool, default=True

If True, return the first instance of the list of instances. If False, return the list of instances.

Returns:
instanceBaseEstimator or list of BaseEstimator

Instance of the class with default parameters. If return_first is False, returns list of instances.

classmethod create_test_instances_and_names(parameter_set='default')[source]

Create list of all test instances and a list of names for them.

Parameters:
parameter_setstr, default=”default”

Name of the set of test parameters to return, for use in tests. If no special parameters are defined for a value, will return “default” set.

Returns:
objslist of instances of cls

i-th instance is cls(**cls.get_test_params()[i]).

nameslist of str, same length as objs

i-th element is name of i-th instance of obj in tests convention is {cls.__name__}-{i} if more than one instance otherwise {cls.__name__}.

parameter_setstr, default=”default”

Name of the set of test parameters to return, for use in tests. If no special parameters are defined for a value, will return “default” set.

fit(X, y=None, axis=1)[source]

Fit transformer to X, optionally using y if supervised.

State change:

Changes state to “fitted”.

Parameters:
XInput data

Time series to fit transform to, of type np.ndarray, pd.Series pd.DataFrame.

yTarget variable, default=None

Additional data, e.g., labels for transformation

axisint, default = 1

Axis of time in the input series. If axis == 0, it is assumed each column is a time series and each row is a time point. i.e. the shape of the data is (n_timepoints, n_channels). axis == 1 indicates the time series are in rows, i.e. the shape of the data is (n_channels, n_timepoints)`.``axis is None indicates that the axis of X is the same as self.axis.

Returns:
selfa fitted instance of the estimator
fit_transform(X, y=None, axis=1)[source]

Fit to data, then transform it.

Fits the transformer to X and y and returns a transformed version of X.

Changes state to “fitted”. Model attributes (ending in “_”) : dependent on estimator.

Parameters:
XInput data

Data to fit transform to, of valid collection type.

yTarget variable, default=None

Additional data, e.g., labels for transformation

axisint, default = 1

Axis of time in the input series. If axis == 0, it is assumed each column is a time series and each row is a time point. i.e. the shape of the data is (n_timepoints, n_channels). axis == 1 indicates the time series are in rows, i.e. the shape of the data is (n_channels, n_timepoints)`.``axis is None indicates that the axis of X is the same as self.axis.

Returns:
transformed version of X with the same axis as passed by the user, if axis
not None.
classmethod get_class_tag(tag_name, tag_value_default=None, raise_error=False)[source]

Get tag value from estimator class (only class tags).

Parameters:
tag_namestr

Name of tag value.

tag_value_defaultany type

Default/fallback value if tag is not found.

raise_errorbool

Whether a ValueError is raised when the tag is not found.

Returns:
tag_value

Value of the tag_name tag in self. If not found, returns an error if raise_error is True, otherwise it returns tag_value_default.

Raises:
ValueError if raise_error is True i.e. if tag_name is not in self.get_tags(
).keys()

See also

get_tag

Get a single tag from an object.

get_tags

Get all tags from an object.

get_class_tag

Get a single tag from a class.

Examples

>>> from aeon.classification import DummyClassifier
>>> DummyClassifier.get_class_tag("capability:multivariate")
True
classmethod get_class_tags()[source]

Get class tags from estimator class and all its parent classes.

Returns:
collected_tagsdict

Dictionary of tag name : tag value pairs. Collected from _tags class attribute via nested inheritance. NOT overridden by dynamic tags set by set_tags or mirror_tags.

get_fitted_params(deep=True)[source]

Get fitted parameters.

State required:

Requires state to be “fitted”.

Parameters:
deepbool, default=True

Whether to return fitted parameters of components.

  • If True, will return a dict of parameter name : value for this object, including fitted parameters of fittable components (= BaseEstimator-valued parameters).

  • If False, will return a dict of parameter name : value for this object, but not include fitted parameters of components.

Returns:
fitted_paramsdict with str-valued keys

Dictionary of fitted parameters, paramname : paramvalue keys-value pairs include:

  • always: all fitted parameters of this object, as via get_param_names values are fitted parameter value for that key, of this object

  • if deep=True, also contains keys/value pairs of component parameters parameters of components are indexed as [componentname]__[paramname] all parameters of componentname appear as paramname with its value

  • if deep=True, also contains arbitrary levels of component recursion, e.g., [componentname]__[componentcomponentname]__[paramname], etc

get_metadata_routing()[source]

Get metadata routing of this object.

Please check User Guide on how the routing mechanism works.

Returns:
routingMetadataRequest

A MetadataRequest encapsulating routing information.

classmethod get_param_defaults()[source]

Get parameter defaults for the object.

Returns:
default_dict: dict with str keys

keys are all parameters of cls that have a default defined in __init__ values are the defaults, as defined in __init__.

classmethod get_param_names()[source]

Get parameter names for the object.

Returns:
param_names: list of str, alphabetically sorted list of parameter names of cls
get_params(deep=True)[source]

Get parameters for this estimator.

Parameters:
deepbool, default=True

If True, will return the parameters for this estimator and contained subobjects that are estimators.

Returns:
paramsdict

Parameter names mapped to their values.

get_tag(tag_name, tag_value_default=None, raise_error=True)[source]

Get tag value from estimator class.

Uses dynamic tag overrides.

Parameters:
tag_namestr

Name of tag to be retrieved.

tag_value_defaultany type, default=None

Default/fallback value if tag is not found.

raise_errorbool

Whether a ValueError is raised when the tag is not found.

Returns:
tag_value

Value of the tag_name tag in self. If not found, returns an error if raise_error is True, otherwise it returns tag_value_default.

Raises:
ValueError if raise_error is True i.e. if tag_name is not in self.get_tags(
).keys()

See also

get_tags

Get all tags from an object.

get_clas_tags

Get all tags from a class.

get_class_tag

Get a single tag from a class.

Examples

>>> from aeon.classification import DummyClassifier
>>> d = DummyClassifier()
>>> d.get_tag("capability:multivariate")
True
get_tags()[source]

Get tags from estimator class.

Includes the dynamic tag overrides.

Returns:
dict

Dictionary of tag name : tag value pairs. Collected from _tags class attribute via nested inheritance and then any overrides and new tags from _tags_dynamic object attribute.

See also

get_tag

Get a single tag from an object.

get_class_tags

Get all tags from a class.

get_class_tag

Get a single tag from a class.

Examples

>>> from aeon.classification import DummyClassifier
>>> d = DummyClassifier()
>>> tags = d.get_tags()
classmethod get_test_params(parameter_set='default')[source]

Return testing parameter settings for the estimator.

Parameters:
parameter_setstr, default=”default”

Name of the set of test parameters to return, for use in tests. If no special parameters are defined for a value, will return “default” set.

Returns:
paramsdict or list of dict, default = {}

Parameters to create testing instances of the class. Each dict are parameters to construct an “interesting” test instance, i.e., MyClass(**params) or MyClass(**params[i]) creates a valid test instance. create_test_instance uses the first (or only) dictionary in params.

inverse_transform(X, y=None, axis=1)[source]

Inverse transform X and return an inverse transformed version.

State required:

Requires state to be “fitted”.

Parameters:
XInput data

Data to fit transform to, of valid collection type.

yTarget variable, default=None

Additional data, e.g., labels for transformation

axisint, default = 1

Axis of time in the input series. If axis == 0, it is assumed each column is a time series and each row is a time point. i.e. the shape of the data is (n_timepoints, n_channels). axis == 1 indicates the time series are in rows, i.e. the shape of the data is (n_channels, n_timepoints)`.``axis is None indicates that the axis of X is the same as self.axis.

Returns:
inverse transformed version of X

of the same type as X

is_composite()[source]

Check if the object is composite.

A composite object is an object which contains objects, as parameters. Called on an instance, since this may differ by instance.

Returns:
composite: bool

Whether self contains a parameter which is BaseObject.

property is_fitted[source]

Whether fit has been called.

classmethod load_from_path(serial)[source]

Load object from file location.

Parameters:
serialobject

Result of ZipFile(path).open(“object).

Returns:
deserialized self resulting in output at path, of cls.save(path)
classmethod load_from_serial(serial)[source]

Load object from serialized memory container.

Parameters:
serialobject

First element of output of cls.save(None).

Returns:
deserialized self resulting in output serial, of cls.save(None).
reset()[source]

Reset the object to a clean post-init state.

Equivalent to sklearn.clone but overwrites self. After self.reset() call, self is equal in value to type(self)(**self.get_params(deep=False))

Detail behaviour: removes any object attributes, except:

hyper-parameters = arguments of __init__ object attributes containing double-underscores, i.e., the string “__”

runs __init__ with current values of hyper-parameters (result of get_params)

Not affected by the reset are: object attributes containing double-underscores class and object methods, class attributes

save(path=None)[source]

Save serialized self to bytes-like object or to (.zip) file.

Behaviour: if path is None, returns an in-memory serialized self if path is a file location, stores self at that location as a zip file

saved files are zip files with following contents: _metadata - contains class of self, i.e., type(self) _obj - serialized self. This class uses the default serialization (pickle).

Parameters:
pathNone or file location (str or Path).

if None, self is saved to an in-memory object if file location, self is saved to that file location. If:

path=”estimator” then a zip file estimator.zip will be made at cwd. path=”/home/stored/estimator” then a zip file estimator.zip will be stored in /home/stored/.

Returns:
if path is None - in-memory serialized self
if path is file location - ZipFile with reference to the file.
set_fit_request(*, axis: bool | None | str = '$UNCHANGED$') DFTSeriesTransformer[source]

Request metadata passed to the fit method.

Note that this method is only relevant if enable_metadata_routing=True (see sklearn.set_config). Please see User Guide on how the routing mechanism works.

The options for each parameter are:

  • True: metadata is requested, and passed to fit if provided. The request is ignored if metadata is not provided.

  • False: metadata is not requested and the meta-estimator will not pass it to fit.

  • None: metadata is not requested, and the meta-estimator will raise an error if the user provides it.

  • str: metadata should be passed to the meta-estimator with this given alias instead of the original name.

The default (sklearn.utils.metadata_routing.UNCHANGED) retains the existing request. This allows you to change the request for some parameters and not others.

Added in version 1.3.

Note

This method is only relevant if this estimator is used as a sub-estimator of a meta-estimator, e.g. used inside a Pipeline. Otherwise it has no effect.

Parameters:
axisstr, True, False, or None, default=sklearn.utils.metadata_routing.UNCHANGED

Metadata routing for axis parameter in fit.

Returns:
selfobject

The updated object.

set_inverse_transform_request(*, axis: bool | None | str = '$UNCHANGED$') DFTSeriesTransformer[source]

Request metadata passed to the inverse_transform method.

Note that this method is only relevant if enable_metadata_routing=True (see sklearn.set_config). Please see User Guide on how the routing mechanism works.

The options for each parameter are:

  • True: metadata is requested, and passed to inverse_transform if provided. The request is ignored if metadata is not provided.

  • False: metadata is not requested and the meta-estimator will not pass it to inverse_transform.

  • None: metadata is not requested, and the meta-estimator will raise an error if the user provides it.

  • str: metadata should be passed to the meta-estimator with this given alias instead of the original name.

The default (sklearn.utils.metadata_routing.UNCHANGED) retains the existing request. This allows you to change the request for some parameters and not others.

Added in version 1.3.

Note

This method is only relevant if this estimator is used as a sub-estimator of a meta-estimator, e.g. used inside a Pipeline. Otherwise it has no effect.

Parameters:
axisstr, True, False, or None, default=sklearn.utils.metadata_routing.UNCHANGED

Metadata routing for axis parameter in inverse_transform.

Returns:
selfobject

The updated object.

set_params(**params)[source]

Set the parameters of this object.

The method works on simple estimators as well as on nested objects. The latter have parameters of the form <component>__<parameter> so that it’s possible to update each component of a nested object.

Parameters:
**paramsdict

BaseObject parameters

Returns:
selfreference to self (after parameters have been set)
set_tags(**tag_dict)[source]

Set dynamic tags to given values.

Parameters:
**tag_dictdict

Dictionary of tag name : tag value pairs.

Returns:
Self

Reference to self.

Notes

Changes object state by setting tag values in tag_dict as dynamic tags in self.

set_transform_request(*, axis: bool | None | str = '$UNCHANGED$') DFTSeriesTransformer[source]

Request metadata passed to the transform method.

Note that this method is only relevant if enable_metadata_routing=True (see sklearn.set_config). Please see User Guide on how the routing mechanism works.

The options for each parameter are:

  • True: metadata is requested, and passed to transform if provided. The request is ignored if metadata is not provided.

  • False: metadata is not requested and the meta-estimator will not pass it to transform.

  • None: metadata is not requested, and the meta-estimator will raise an error if the user provides it.

  • str: metadata should be passed to the meta-estimator with this given alias instead of the original name.

The default (sklearn.utils.metadata_routing.UNCHANGED) retains the existing request. This allows you to change the request for some parameters and not others.

Added in version 1.3.

Note

This method is only relevant if this estimator is used as a sub-estimator of a meta-estimator, e.g. used inside a Pipeline. Otherwise it has no effect.

Parameters:
axisstr, True, False, or None, default=sklearn.utils.metadata_routing.UNCHANGED

Metadata routing for axis parameter in transform.

Returns:
selfobject

The updated object.

transform(X, y=None, axis=1)[source]

Transform X and return a transformed version.

State required:

Requires state to be “fitted”.

Parameters:
XInput data

Data to fit transform to, of valid collection type.

yTarget variable, default=None

Additional data, e.g., labels for transformation

axisint, default = 1

Axis of time in the input series. If axis == 0, it is assumed each column is a time series and each row is a time point. i.e. the shape of the data is (n_timepoints, n_channels). axis == 1 indicates the time series are in rows, i.e. the shape of the data is (n_channels, n_timepoints)`.``axis is None indicates that the axis of X is the same as self.axis.

Returns:
transformed version of X with the same axis as passed by the user, if axis
not None.
update(X, y=None, update_params=True, axis=1)[source]

Update transformer with X, optionally y.

Parameters:
Xdata to update of valid series type.
yTarget variable, default=None

Additional data, e.g., labels for transformation

update_paramsbool, default=True

whether the model is updated. Yes if true, if false, simply skips call. argument exists for compatibility with forecasting module.

axisint, default=None

axis along which to update. If None, uses self.axis.

Returns:
selfa fitted instance of the estimator