plot_pairwise_scatter

plot_pairwise_scatter(results_a, results_b, method_a, method_b, metric='accuracy', lower_better=False, statistic_tests=True, title=None, figsize=(8, 8), color_palette='tab10')[source]

Plot a scatter that compares datasets’ results achieved by two methods.

Parameters:
results_anp.array

Scores (either accuracies or errors) per dataset for the first approach.

results_bnp.array

Scores (either accuracies or errors) per dataset for the second approach.

method_astr

Method name of the first approach.

method_bstr

Method name of the second approach.

metricstr, default = “accuracy”

Metric to be used for the comparison.

lower_betterbool, default = False

If True, lower values are considered better, i.e. errors.

statistic_testsbool, default = True

If True, paired ttest and wilcoxon p-values are shown in the bottom of the plot.

titlestr, default = None

Title to be shown in the top of the plot.

figsizetuple, default = (10, 6)

Size of the figure.

color_palettestr, default = “tab10”

Color palette to be used for the plot.

Returns:
figmatplotlib.figure.Figure
axmatplotlib.axes.Axes

Examples

>>> from aeon.visualisation import plot_pairwise_scatter
>>> from aeon.benchmarking.results_loaders import get_estimator_results_as_array
>>> methods = ["InceptionTimeClassifier", "WEASEL-Dilation"]
>>> results = get_estimator_results_as_array(estimators=methods)  
>>> plot = plot_pairwise_scatter(  
...     results[0], methods[0], methods[1])  
>>> plot.show()  
>>> plot.savefig("scatterplot.pdf")