plot_pairwise_scatter¶
- plot_pairwise_scatter(results_a, results_b, method_a, method_b, metric='accuracy', lower_better=False, statistic_tests=True, title=None, figsize=(8, 8), color_palette='tab10')[source]¶
Plot a scatter that compares datasets’ results achieved by two methods.
- Parameters:
- results_anp.array
Scores (either accuracies or errors) per dataset for the first approach.
- results_bnp.array
Scores (either accuracies or errors) per dataset for the second approach.
- method_astr
Method name of the first approach.
- method_bstr
Method name of the second approach.
- metricstr, default = “accuracy”
Metric to be used for the comparison.
- lower_betterbool, default = False
If True, lower values are considered better, i.e. errors.
- statistic_testsbool, default = True
If True, paired ttest and wilcoxon p-values are shown in the bottom of the plot.
- titlestr, default = None
Title to be shown in the top of the plot.
- figsizetuple, default = (10, 6)
Size of the figure.
- color_palettestr, default = “tab10”
Color palette to be used for the plot.
- Returns:
- figmatplotlib.figure.Figure
- axmatplotlib.axes.Axes
Examples
>>> from aeon.visualisation import plot_pairwise_scatter >>> from aeon.benchmarking.results_loaders import get_estimator_results_as_array >>> methods = ["InceptionTimeClassifier", "WEASEL-Dilation"] >>> results = get_estimator_results_as_array(estimators=methods) >>> plot = plot_pairwise_scatter( ... results[0], methods[0], methods[1]) >>> plot.show() >>> plot.savefig("scatterplot.pdf")