hausdorff_error¶
- hausdorff_error(true_change_points: _SupportsArray[dtype[Any]] | _NestedSequence[_SupportsArray[dtype[Any]]] | bool | int | float | complex | str | bytes | _NestedSequence[bool | int | float | complex | str | bytes], pred_change_points: _SupportsArray[dtype[Any]] | _NestedSequence[_SupportsArray[dtype[Any]]] | bool | int | float | complex | str | bytes | _NestedSequence[bool | int | float | complex | str | bytes], symmetric: bool = True, seed: int = 0) float [source]¶
Compute the Hausdorff distance between two sets of change points.
See also
This function wraps
scipy.spatial.distance.directed_hausdorff
- Parameters:
- true_change_points: array_like
Integer indexes (positions) of true change points
- pred_change_points: array_like
Integer indexes (positions) of predicted change points
- symmetric: bool
If True symmetric Hausdorff distance will be used
- seed: int, default=0
Local numpy.random.RandomState seed. Default is 0, a random shuffling of u and v that guarantees reproducibility.
- Returns:
- Hausdorff error.