BaseDeepClassifier¶
- class BaseDeepClassifier(batch_size=40, random_state=None, last_file_name='last_model')[source]¶
Abstract base class for deep learning time series classifiers.
The base classifier provides a deep learning default method for _predict and _predict_proba, and provides a new abstract method for building a model.
- Parameters:
- batch_sizeint, default = 40
training batch size for the model
- last_file_namestr, default = “last_model”
The name of the file of the last model, used only if save_last_model_to_file is used
Methods
build_model
(input_shape, n_classes)Construct a compiled, un-trained, keras model that is ready for training.
Check if the estimator has been fitted.
clone
([random_state])Obtain a clone of the object with the same hyperparameters.
Convert y to required Keras format.
create_test_instance
([parameter_set, ...])Construct Estimator instance if possible.
fit
(X, y)Fit time series classifier to training data.
fit_predict
(X, y, **kwargs)Fits the classifier and predicts class labels for X.
fit_predict_proba
(X, y, **kwargs)Fits the classifier and predicts class label probabilities for X.
get_class_tag
(tag_name[, tag_value_default, ...])Get tag value from estimator class (only class tags).
Get class tags from estimator class and all its parent classes.
get_fitted_params
([deep])Get fitted parameters.
Get metadata routing of this object.
get_params
([deep])Get parameters for this estimator.
get_tag
(tag_name[, tag_value_default, ...])Get tag value from estimator class.
get_tags
()Get tags from estimator.
get_test_params
([parameter_set])Return testing parameter settings for the estimator.
load_from_path
(serial)Load object from file location.
load_from_serial
(serial)Load object from serialized memory container.
load_model
(model_path, classes)Load a pre-trained keras model instead of fitting.
predict
(X)Predicts class labels for time series in X.
Predicts class label probabilities for time series in X.
reset
([keep])Reset the object to a clean post-init state.
save
([path])Save serialized self to bytes-like object or to (.zip) file.
save_last_model_to_file
([file_path])Save the last epoch of the trained deep learning model.
score
(X, y[, metric, use_proba, metric_params])Scores predicted labels against ground truth labels on X.
set_params
(**params)Set the parameters of this estimator.
set_score_request
(*[, metric, ...])Request metadata passed to the
score
method.set_tags
(**tag_dict)Set dynamic tags to given values.
summary
()Summary function to return the losses/metrics for model fit.
- abstract build_model(input_shape, n_classes)[source]¶
Construct a compiled, un-trained, keras model that is ready for training.
- Parameters:
- input_shapetuple
The shape of the data fed into the input layer
- n_classesint
The number of classes, which shall become the size of the output layer
- Returns:
- A compiled Keras Model
- summary()[source]¶
Summary function to return the losses/metrics for model fit.
- Returns:
- historydict or None,
Dictionary containing model’s train/validation losses and metrics
- save_last_model_to_file(file_path='./')[source]¶
Save the last epoch of the trained deep learning model.
- Parameters:
- file_pathstr, default = “./”
The directory where the model will be saved
- Returns:
- None
- load_model(model_path, classes)[source]¶
Load a pre-trained keras model instead of fitting.
When calling this function, all functionalities can be used such as predict, predict_proba etc. with the loaded model.
- Parameters:
- model_pathstr (path including model name and extension)
The directory where the model will be saved including the model name with a “.keras” extension. Example: model_path=”path/to/file/best_model.keras”
- classesnp.ndarray
The set of unique classes the pre-trained loaded model is trained to predict during the classification task.
- Returns:
- None
- check_is_fitted()[source]¶
Check if the estimator has been fitted.
- Raises:
- NotFittedError
If the estimator has not been fitted yet.
- clone(random_state=None)[source]¶
Obtain a clone of the object with the same hyperparameters.
A clone is a different object without shared references, in post-init state. This function is equivalent to returning
sklearn.clone
of self. Equal in value totype(self)(**self.get_params(deep=False))
.- Parameters:
- random_stateint, RandomState instance, or None, default=None
Sets the random state of the clone. If None, the random state is not set. If int, random_state is the seed used by the random number generator. If RandomState instance, random_state is the random number generator.
- Returns:
- estimatorobject
Instance of
type(self)
, clone of self (see above)
- classmethod create_test_instance(parameter_set='default', return_first=True)[source]¶
Construct Estimator instance if possible.
Calls the get_test_params method and returns an instance or list of instances using the returned dict or list of dict.
- Parameters:
- parameter_setstr, default=”default”
Name of the set of test parameters to return, for use in tests. If no special parameters are defined for a value, will return “default” set.
- return_firstbool, default=True
If True, return the first instance of the list of instances. If False, return the list of instances.
- Returns:
- instanceBaseAeonEstimator or list of BaseAeonEstimator
Instance of the class with default parameters. If return_first is False, returns list of instances.
- fit(X, y) BaseCollectionEstimator [source]¶
Fit time series classifier to training data.
- Parameters:
- Xnp.ndarray or list
Input data, any number of channels, equal length series of shape
( n_cases, n_channels, n_timepoints)
or 2D np.array (univariate, equal length series) of shape(n_cases, n_timepoints)
or list of numpy arrays (any number of channels, unequal length series) of shape[n_cases]
, 2D np.array(n_channels, n_timepoints_i)
, wheren_timepoints_i
is length of seriesi
. Other types are allowed and converted into one of the above.Different estimators have different capabilities to handle different types of input. If
self.get_tag("capability:multivariate")
is False, they cannot handle multivariate series, so eithern_channels == 1
is true or X is 2D of shape(n_cases, n_timepoints)
. Ifself.get_tag( "capability:unequal_length")
is False, they cannot handle unequal length input. In both situations, aValueError
is raised if X has a characteristic that the estimator does not have the capability for is passed.- ynp.ndarray
1D np.array of float or str, of shape
(n_cases)
- class labels (ground truth) for fitting indices corresponding to instance indices in X.
- Returns:
- selfBaseClassifier
Reference to self.
Notes
Changes state by creating a fitted model that updates attributes ending in “_” and sets is_fitted flag to True.
- fit_predict(X, y, **kwargs) ndarray [source]¶
Fits the classifier and predicts class labels for X.
fit_predict produces prediction estimates using just the train data. By default, this is through 10x cross validation, although some estimators may utilise specialist techniques such as out-of-bag estimates or leave-one-out cross-validation.
Classifiers which override _fit_predict will have the
capability:train_estimate
tag set to True.Generally, this will not be the same as fitting on the whole train data then making train predictions. To do this, you should call fit(X,y).predict(X)
- Parameters:
- Xnp.ndarray or list
Input data, any number of channels, equal length series of shape
( n_cases, n_channels, n_timepoints)
or 2D np.array (univariate, equal length series) of shape(n_cases, n_timepoints)
or list of numpy arrays (any number of channels, unequal length series) of shape[n_cases]
, 2D np.array(n_channels, n_timepoints_i)
, wheren_timepoints_i
is length of seriesi
. other types are allowed and converted into one of the above.Different estimators have different capabilities to handle different types of input. If
self.get_tag("capability:multivariate")
is False, they cannot handle multivariate series, so eithern_channels == 1
is true or X is 2D of shape(n_cases, n_timepoints)
. Ifself.get_tag( "capability:unequal_length")
is False, they cannot handle unequal length input. In both situations, aValueError
is raised if X has a characteristic that the estimator does not have the capability for is passed.- ynp.ndarray
1D np.array of float or str, of shape
(n_cases)
- class labels (ground truth) for fitting indices corresponding to instance indices in X.- kwargsdict
key word arguments to configure the default cross validation if the base class default fit_predict is used (i.e. if function
_fit_predict
is not overridden. If_fit_predict
is overridden, kwargs may not function as expected. If_fit_predict
is not overridden, valid input iscv_size
integer, which is the number of cross validation folds to use to estimate train data. Ifcv_size
is not passed, the default is 10. Ifcv_size
is greater than the minimum number of samples in any class, it is set to this minimum.
- Returns:
- predictionsnp.ndarray
shape
[n_cases]
- predicted class labels indices correspond to instance indices in
- fit_predict_proba(X, y, **kwargs) ndarray [source]¶
Fits the classifier and predicts class label probabilities for X.
fit_predict_proba produces probability estimates using just the train data. By default, this is through 10x cross validation, although some estimators may utilise specialist techniques such as out-of-bag estimates or leave-one-out cross-validation.
Classifiers which override _fit_predict_proba will have the
capability:train_estimate
tag set to True.Generally, this will not be the same as fitting on the whole train data then making train predictions. To do this, you should call fit(X,y).predict_proba(X)
- Parameters:
- Xnp.ndarray or list
Input data, any number of channels, equal length series of shape
( n_cases, n_channels, n_timepoints)
or 2D np.array (univariate, equal length series) of shape(n_cases, n_timepoints)
or list of numpy arrays (any number of channels, unequal length series) of shape[n_cases]
, 2D np.array(n_channels, n_timepoints_i)
, wheren_timepoints_i
is length of seriesi
. other types are allowed and converted into one of the above.Different estimators have different capabilities to handle different types of input. If
self.get_tag("capability:multivariate")
is False, they cannot handle multivariate series, so eithern_channels == 1
is true or X is 2D of shape(n_cases, n_timepoints)
. Ifself.get_tag( "capability:unequal_length")
is False, they cannot handle unequal length input. In both situations, aValueError
is raised if X has a characteristic that the estimator does not have the capability for is passed.- ynp.ndarray
1D np.array of float or str, of shape
(n_cases)
- class labels (ground truth) for fitting indices corresponding to instance indices in X.- kwargsdict
key word arguments to configure the default cross validation if the base class default fit_predict is used (i.e. if function
_fit_predict
is not overridden. If_fit_predict
is overridden, kwargs may not function as expected. If_fit_predict
is not overridden, valid input iscv_size
integer, which is the number of cross validation folds to use to estimate train data. Ifcv_size
is not passed, the default is 10. Ifcv_size
is greater than the minimum number of samples in any class, it is set to this minimum.
- Returns:
- probabilitiesnp.ndarray
2D array of shape
(n_cases, n_classes)
- predicted class probabilities First dimension indices correspond to instance indices in X, second dimension indices correspond to class labels, (i, j)-th entry is estimated probability that i-th instance is of class j
- classmethod get_class_tag(tag_name, tag_value_default=None, raise_error=False)[source]¶
Get tag value from estimator class (only class tags).
- Parameters:
- tag_namestr
Name of tag value.
- tag_value_defaultany type
Default/fallback value if tag is not found.
- raise_errorbool
Whether a ValueError is raised when the tag is not found.
- Returns:
- tag_value
Value of the
tag_name
tag in self. If not found, returns an error if raise_error is True, otherwise it returns tag_value_default.
- Raises:
- ValueError
if raise_error is
True
andtag_name
is not inself.get_tags().keys()
Examples
>>> from aeon.classification import DummyClassifier >>> DummyClassifier.get_class_tag("capability:multivariate") True
- classmethod get_class_tags()[source]¶
Get class tags from estimator class and all its parent classes.
- Returns:
- collected_tagsdict
Dictionary of tag name and tag value pairs. Collected from
_tags
class attribute via nested inheritance. These are not overridden by dynamic tags set byset_tags
or class__init__
calls.
- get_fitted_params(deep=True)[source]¶
Get fitted parameters.
- State required:
Requires state to be “fitted”.
- Parameters:
- deepbool, default=True
Whether to return fitted parameters of components.
If True, will return a dict of parameter name : value for this object, including fitted parameters of fittable components (= BaseAeonEstimator-valued parameters).
If False, will return a dict of parameter name : value for this object, but not include fitted parameters of components.
- Returns:
- fitted_paramsdict with str-valued keys
Dictionary of fitted parameters, paramname : paramvalue keys-value pairs include:
always: all fitted parameters of this object
if
deep=True
, also contains keys/value pairs of component parameters parameters of components are indexed as[componentname]__[paramname]
all parameters ofcomponentname
appear asparamname
with its valueif
deep=True
, also contains arbitrary levels of component recursion, e.g.,[componentname]__[componentcomponentname]__[paramname]
, etc.
- get_metadata_routing()[source]¶
Get metadata routing of this object.
Please check User Guide on how the routing mechanism works.
- Returns:
- routingMetadataRequest
A
MetadataRequest
encapsulating routing information.
- get_params(deep=True)[source]¶
Get parameters for this estimator.
- Parameters:
- deepbool, default=True
If True, will return the parameters for this estimator and contained subobjects that are estimators.
- Returns:
- paramsdict
Parameter names mapped to their values.
- get_tag(tag_name, tag_value_default=None, raise_error=True)[source]¶
Get tag value from estimator class.
Includes dynamic and overridden tags.
- Parameters:
- tag_namestr
Name of tag to be retrieved.
- tag_value_defaultany type, default=None
Default/fallback value if tag is not found.
- raise_errorbool
Whether a ValueError is raised when the tag is not found.
- Returns:
- tag_value
Value of the
tag_name
tag in self. If not found, returns an error if raise_error is True, otherwise it returns tag_value_default.
- Raises:
- ValueError
if raise_error is
True
andtag_name
is not inself.get_tags().keys()
Examples
>>> from aeon.classification import DummyClassifier >>> d = DummyClassifier() >>> d.get_tag("capability:multivariate") True
- get_tags()[source]¶
Get tags from estimator.
Includes dynamic and overridden tags.
- Returns:
- collected_tagsdict
Dictionary of tag name and tag value pairs. Collected from
_tags
class attribute via nested inheritance and then any overridden and new tags from__init__
orset_tags
.
- classmethod get_test_params(parameter_set='default')[source]¶
Return testing parameter settings for the estimator.
- Parameters:
- parameter_setstr, default=”default”
Name of the set of test parameters to return, for use in tests. If no special parameters are defined for a value, will return “default” set.
- Returns:
- paramsdict or list of dict, default = {}
Parameters to create testing instances of the class. Each dict are parameters to construct an “interesting” test instance, i.e., MyClass(**params) or MyClass(**params[i]) creates a valid test instance. create_test_instance uses the first (or only) dictionary in params.
- classmethod load_from_path(serial)[source]¶
Load object from file location.
- Parameters:
- serialobject
Result of ZipFile(path).open(“object).
- Returns:
- deserialized self resulting in output at path, of cls.save(path)
- classmethod load_from_serial(serial)[source]¶
Load object from serialized memory container.
- Parameters:
- serialobject
First element of output of cls.save(None).
- Returns:
- deserialized self resulting in output serial, of cls.save(None).
- predict(X) ndarray [source]¶
Predicts class labels for time series in X.
- Parameters:
- Xnp.ndarray or list
Input data, any number of channels, equal length series of shape
( n_cases, n_channels, n_timepoints)
or 2D np.array (univariate, equal length series) of shape(n_cases, n_timepoints)
or list of numpy arrays (any number of channels, unequal length series) of shape[n_cases]
, 2D np.array(n_channels, n_timepoints_i)
, wheren_timepoints_i
is length of seriesi
other types are allowed and converted into one of the above.Different estimators have different capabilities to handle different types of input. If
self.get_tag("capability:multivariate")
is False, they cannot handle multivariate series, so eithern_channels == 1
is true or X is 2D of shape(n_cases, n_timepoints)
. Ifself.get_tag( "capability:unequal_length")
is False, they cannot handle unequal length input. In both situations, aValueError
is raised if X has a characteristic that the estimator does not have the capability for is passed.
- Returns:
- predictionsnp.ndarray
1D np.array of float, of shape (n_cases) - predicted class labels indices correspond to instance indices in X
- predict_proba(X) ndarray [source]¶
Predicts class label probabilities for time series in X.
- Parameters:
- Xnp.ndarray or list
Input data, any number of channels, equal length series of shape
( n_cases, n_channels, n_timepoints)
or 2D np.array (univariate, equal length series) of shape(n_cases, n_timepoints)
or list of numpy arrays (any number of channels, unequal length series) of shape[n_cases]
, 2D np.array(n_channels, n_timepoints_i)
, wheren_timepoints_i
is length of seriesi
. other types are allowed and converted into one of the above.Different estimators have different capabilities to handle different types of input. If
self.get_tag("capability:multivariate")
is False, they cannot handle multivariate series, so eithern_channels == 1
is true or X is 2D of shape(n_cases, n_timepoints)
. Ifself.get_tag( "capability:unequal_length")
is False, they cannot handle unequal length input. In both situations, aValueError
is raised if X has a characteristic that the estimator does not have the capability for is passed.
- Returns:
- probabilitiesnp.ndarray
2D array of shape
(n_cases, n_classes)
- predicted class probabilities First dimension indices correspond to instance indices in X, second dimension indices correspond to class labels, (i, j)-th entry is estimated probability that i-th instance is of class j
- reset(keep=None)[source]¶
Reset the object to a clean post-init state.
After a
self.reset()
call, self is equal or similar in value totype(self)(**self.get_params(deep=False))
, assuming no other attributes were kept usingkeep
.- Detailed behaviour:
- removes any object attributes, except:
hyper-parameters (arguments of
__init__
) object attributes containing double-underscores, i.e., the string “__”
runs
__init__
with current values of hyperparameters (result of get_params)- Not affected by the reset are:
object attributes containing double-underscores class and object methods, class attributes any attributes specified in the
keep
argument
- Parameters:
- keepNone, str, or list of str, default=None
If None, all attributes are removed except hyper-parameters. If str, only the attribute with this name is kept. If list of str, only the attributes with these names are kept.
- Returns:
- self
Reference to self.
- save(path=None)[source]¶
Save serialized self to bytes-like object or to (.zip) file.
Behaviour: if path is None, returns an in-memory serialized self if path is a file location, stores self at that location as a zip file
saved files are zip files with following contents: _metadata - contains class of self, i.e., type(self) _obj - serialized self. This class uses the default serialization (pickle).
- Parameters:
- pathNone or file location (str or Path).
if None, self is saved to an in-memory object if file location, self is saved to that file location. If:
path=”estimator” then a zip file estimator.zip will be made at cwd. path=”/home/stored/estimator” then a zip file estimator.zip will be stored in /home/stored/.
- Returns:
- if path is None - in-memory serialized self
- if path is file location - ZipFile with reference to the file.
- score(X, y, metric='accuracy', use_proba=False, metric_params=None) float [source]¶
Scores predicted labels against ground truth labels on X.
- Parameters:
- Xnp.ndarray or list
Input data, any number of channels, equal length series of shape
( n_cases, n_channels, n_timepoints)
or 2D np.array (univariate, equal length series) of shape(n_cases, n_timepoints)
or list of numpy arrays (any number of channels, unequal length series) of shape[n_cases]
, 2D np.array(n_channels, n_timepoints_i)
, wheren_timepoints_i
is length of seriesi
. other types are allowed and converted into one of the above.Different estimators have different capabilities to handle different types of input. If
self.get_tag("capability:multivariate")
is False, they cannot handle multivariate series, so eithern_channels == 1
is true or X is 2D of shape(n_cases, n_timepoints)
. Ifself.get_tag( "capability:unequal_length")
is False, they cannot handle unequal length input. In both situations, aValueError
is raised if X has a characteristic that the estimator does not have the capability for is passed.- ynp.ndarray
1D np.array of float or str, of shape
(n_cases)
- class labels (ground truth) for fitting indices corresponding to instance indices in X.- metricUnion[str, callable], default=”accuracy”,
Defines the scoring metric to test the fit of the model. For supported strings arguments, check sklearn.metrics.get_scorer_names.
- use_probabool, default=False,
Argument to check if scorer works on probability estimates or not.
- metric_paramsdict, default=None,
Contains parameters to be passed to the scoring function. If None, no parameters are passed.
- Returns:
- scorefloat
Accuracy score of predict(X) vs y.
- set_params(**params)[source]¶
Set the parameters of this estimator.
The method works on simple estimators as well as on nested objects (such as
Pipeline
). The latter have parameters of the form<component>__<parameter>
so that it’s possible to update each component of a nested object.- Parameters:
- **paramsdict
Estimator parameters.
- Returns:
- selfestimator instance
Estimator instance.
- set_score_request(*, metric: bool | None | str = '$UNCHANGED$', metric_params: bool | None | str = '$UNCHANGED$', use_proba: bool | None | str = '$UNCHANGED$') BaseDeepClassifier [source]¶
Request metadata passed to the
score
method.Note that this method is only relevant if
enable_metadata_routing=True
(seesklearn.set_config
). Please see User Guide on how the routing mechanism works.The options for each parameter are:
True
: metadata is requested, and passed toscore
if provided. The request is ignored if metadata is not provided.False
: metadata is not requested and the meta-estimator will not pass it toscore
.None
: metadata is not requested, and the meta-estimator will raise an error if the user provides it.str
: metadata should be passed to the meta-estimator with this given alias instead of the original name.
The default (
sklearn.utils.metadata_routing.UNCHANGED
) retains the existing request. This allows you to change the request for some parameters and not others.Added in version 1.3.
Note
This method is only relevant if this estimator is used as a sub-estimator of a meta-estimator, e.g. used inside a
Pipeline
. Otherwise it has no effect.- Parameters:
- metricstr, True, False, or None, default=sklearn.utils.metadata_routing.UNCHANGED
Metadata routing for
metric
parameter inscore
.- metric_paramsstr, True, False, or None, default=sklearn.utils.metadata_routing.UNCHANGED
Metadata routing for
metric_params
parameter inscore
.- use_probastr, True, False, or None, default=sklearn.utils.metadata_routing.UNCHANGED
Metadata routing for
use_proba
parameter inscore
.
- Returns:
- selfobject
The updated object.