ClassifierPipeline#
- class ClassifierPipeline(classifier, transformers)[source]#
Pipeline of transformers and a classifier.
The ClassifierPipeline compositor chains transformers and a single classifier. The pipeline is constructed with a list of aeon transformers, plus a classifier,
i.e., estimators following the BaseTransformer resp BaseClassifier interface.
- The transformer list can be unnamed - a simple list of transformers -
or string named - a list of pairs of string, estimator.
- For a list of transformers trafo1, trafo2, …, trafoN and a classifier clf,
the pipeline behaves as follows:
- fit(X, y) - changes styte by running trafo1.fit_transform on X,
them trafo2.fit_transform on the output of trafo1.fit_transform, etc sequentially, with trafo[i] receiving the output of trafo[i-1], and then running clf.fit with X being the output of trafo[N], and y identical with the input to self.fit
- predict(X) - result is of executing trafo1.transform, trafo2.transform, etc
with trafo[i].transform input = output of trafo[i-1].transform, then running clf.predict on the output of trafoN.transform, and returning the output of clf.predict
- predict_proba(X) - result is of executing trafo1.transform, trafo2.transform,
etc, with trafo[i].transform input = output of trafo[i-1].transform, then running clf.predict_proba on the output of trafoN.transform, and returning the output of clf.predict_proba
- get_params, set_params uses sklearn compatible nesting interface
if list is unnamed, names are generated as names of classes if names are non-unique, f”_{str(i)}” is appended to each name string
where i is the total count of occurrence of a non-unique string inside the list of names leading up to it (inclusive)
- ClassifierPipeline can also be created by using the magic multiplication
- on any classifier, i.e., if my_clf inherits from BaseClassifier,
and my_trafo1, my_trafo2 inherit from BaseTransformer, then, for instance, my_trafo1 * my_trafo2 * my_clf will result in the same object as obtained from the constructor ClassifierPipeline(classifier=my_clf, transformers=[my_trafo1, my_trafo2])
- magic multiplication can also be used with (str, transformer) pairs,
as long as one element in the chain is a transformer
- Parameters:
- classifieraeon classifier, i.e., estimator inheriting from BaseClassifier
this is a “blueprint” classifier, state does not change when fit is called
- transformerslist of aeon transformers, or
list of tuples (str, transformer) of aeon transformers these are “blueprint” transformers, states do not change when fit is called
- Attributes:
- classifier_aeon classifier, clone of classifier in classifier
this clone is fitted in the pipeline when fit is called
- transformers_list of tuples (str, transformer) of aeon transformers
clones of transformers in transformers which are fitted in the pipeline is always in (str, transformer) format, even if transformers is just a list strings not passed in transformers are unique generated strings i-th transformer in transformers_ is clone of i-th in transformers
Examples
>>> from aeon.transformations.panel.interpolate import TSInterpolator >>> from aeon.classification.interval_based import TimeSeriesForestClassifier >>> from aeon.datasets import load_unit_test >>> from aeon.classification.compose import ClassifierPipeline >>> X_train, y_train = load_unit_test(split="train") >>> X_test, y_test = load_unit_test(split="test") >>> pipeline = ClassifierPipeline( ... TimeSeriesForestClassifier(n_estimators=5), [TSInterpolator(length=10)] ... ) >>> pipeline.fit(X_train, y_train) ClassifierPipeline(...) >>> y_pred = pipeline.predict(X_test)
Methods
Check if the estimator has been fitted.
clone
()Obtain a clone of the object with same hyper-parameters.
clone_tags
(estimator[, tag_names])clone/mirror tags from another estimator as dynamic override.
create_test_instance
([parameter_set])Construct Estimator instance if possible.
create_test_instances_and_names
([parameter_set])Create list of all test instances and a list of names for them.
fit
(X, y)Fit time series classifier to training data.
get_class_tag
(tag_name[, tag_value_default])Get tag value from estimator class (only class tags).
Get class tags from estimator class and all its parent classes.
get_fitted_params
([deep])Get fitted parameters.
Get parameter defaults for the object.
Get parameter names for the object.
get_params
([deep])Get parameters of estimator in transformers.
get_tag
(tag_name[, tag_value_default, ...])Get tag value from estimator class and dynamic tag overrides.
get_tags
()Get tags from estimator class and dynamic tag overrides.
get_test_params
([parameter_set])Return testing parameter settings for the estimator.
Check if the object is composite.
load_from_path
(serial)Load object from file location.
load_from_serial
(serial)Load object from serialized memory container.
predict
(X)Predicts labels for time series in X.
Predicts labels probabilities for sequences in X.
reset
()Reset the object to a clean post-init state.
save
([path])Save serialized self to bytes-like object or to (.zip) file.
score
(X, y)Scores predicted labels against ground truth labels on X.
set_params
(**kwargs)Set the parameters of estimator in transformers.
set_tags
(**tag_dict)Set dynamic tags to given values.
- get_params(deep=True)[source]#
Get parameters of estimator in transformers.
- Parameters:
- deepboolean, optional, default=True
If True, will return the parameters for this estimator and contained sub-objects that are estimators.
- Returns:
- paramsmapping of string to any
Parameter names mapped to their values.
- set_params(**kwargs)[source]#
Set the parameters of estimator in transformers.
Valid parameter keys can be listed with
get_params()
.- Returns:
- selfreturns an instance of self.
- classmethod get_test_params(parameter_set='default')[source]#
Return testing parameter settings for the estimator.
- Parameters:
- parameter_setstr, default=”default”
Name of the set of test parameters to return, for use in tests. If no special parameters are defined for a value, will return “default” set.
- Returns:
- paramsdict or list of dict, default={}
Parameters to create testing instances of the class. Each dict are parameters to construct an “interesting” test instance, i.e., MyClass(**params) or MyClass(**params[i]) creates a valid test instance. create_test_instance uses the first (or only) dictionary in params.
- check_is_fitted()[source]#
Check if the estimator has been fitted.
- Raises:
- NotFittedError
If the estimator has not been fitted yet.
- clone()[source]#
Obtain a clone of the object with same hyper-parameters.
A clone is a different object without shared references, in post-init state. This function is equivalent to returning sklearn.clone of self. Equal in value to type(self)(**self.get_params(deep=False)).
- Returns:
- instance of type(self), clone of self (see above)
- clone_tags(estimator, tag_names=None)[source]#
clone/mirror tags from another estimator as dynamic override.
- Parameters:
- estimatorestimator inheriting from :class:BaseEstimator
- tag_namesstr or list of str, default = None
Names of tags to clone. If None then all tags in estimator are used as tag_names.
- Returns:
- Self
Reference to self.
Notes
Changes object state by setting tag values in tag_set from estimator as dynamic tags in self.
- classmethod create_test_instance(parameter_set='default')[source]#
Construct Estimator instance if possible.
- Parameters:
- parameter_setstr, default=”default”
Name of the set of test parameters to return, for use in tests. If no special parameters are defined for a value, will return “default” set.
- Returns:
- instanceinstance of the class with default parameters
Notes
get_test_params can return dict or list of dict. This function takes first or single dict that get_test_params returns, and constructs the object with that.
- classmethod create_test_instances_and_names(parameter_set='default')[source]#
Create list of all test instances and a list of names for them.
- Parameters:
- parameter_setstr, default=”default”
Name of the set of test parameters to return, for use in tests. If no special parameters are defined for a value, will return “default” set.
- Returns:
- objslist of instances of cls
i-th instance is cls(**cls.get_test_params()[i])
- nameslist of str, same length as objs
i-th element is name of i-th instance of obj in tests convention is {cls.__name__}-{i} if more than one instance otherwise {cls.__name__}
- parameter_setstr, default=”default”
Name of the set of test parameters to return, for use in tests. If no special parameters are defined for a value, will return “default” set.
- fit(X, y)[source]#
Fit time series classifier to training data.
- Parameters:
- X3D np.array (any number of channels, equal length series)
of shape [n_instances, n_channels, series_length]
- or 2D np.array (univariate, equal length series)
of shape [n_instances, series_length]
- y1D np.array of int, of shape [n_instances] - class labels for fitting
indices correspond to instance indices in X
- Returns:
- selfReference to self.
Notes
Changes state by creating a fitted model that updates attributes ending in “_” and sets is_fitted flag to True.
- classmethod get_class_tag(tag_name, tag_value_default=None)[source]#
Get tag value from estimator class (only class tags).
- Parameters:
- tag_namestr
Name of tag value.
- tag_value_defaultany type
Default/fallback value if tag is not found.
- Returns:
- tag_value
Value of the tag_name tag in self. If not found, returns tag_value_default.
- classmethod get_class_tags()[source]#
Get class tags from estimator class and all its parent classes.
- Returns:
- collected_tagsdict
Dictionary of tag name : tag value pairs. Collected from _tags class attribute via nested inheritance. NOT overridden by dynamic tags set by set_tags or mirror_tags.
- get_fitted_params(deep=True)[source]#
Get fitted parameters.
- State required:
Requires state to be “fitted”.
- Parameters:
- deepbool, default=True
Whether to return fitted parameters of components.
If True, will return a dict of parameter name : value for this object, including fitted parameters of fittable components (= BaseEstimator-valued parameters).
If False, will return a dict of parameter name : value for this object, but not include fitted parameters of components.
- Returns:
- fitted_paramsdict with str-valued keys
Dictionary of fitted parameters, paramname : paramvalue keys-value pairs include:
always: all fitted parameters of this object, as via get_param_names values are fitted parameter value for that key, of this object
if deep=True, also contains keys/value pairs of component parameters parameters of components are indexed as [componentname]__[paramname] all parameters of componentname appear as paramname with its value
if deep=True, also contains arbitrary levels of component recursion, e.g., [componentname]__[componentcomponentname]__[paramname], etc
- classmethod get_param_defaults()[source]#
Get parameter defaults for the object.
- Returns:
- default_dict: dict with str keys
keys are all parameters of cls that have a default defined in __init__ values are the defaults, as defined in __init__
- classmethod get_param_names()[source]#
Get parameter names for the object.
- Returns:
- param_names: list of str, alphabetically sorted list of parameter names of cls
- get_tag(tag_name, tag_value_default=None, raise_error=True)[source]#
Get tag value from estimator class and dynamic tag overrides.
- Parameters:
- tag_namestr
Name of tag to be retrieved
- tag_value_defaultany type, optional; default=None
Default/fallback value if tag is not found
- raise_errorbool
whether a ValueError is raised when the tag is not found
- Returns:
- tag_value
Value of the tag_name tag in self. If not found, returns an error if raise_error is True, otherwise it returns tag_value_default.
- Raises:
- ValueError if raise_error is True i.e. if tag_name is not in self.get_tags(
- ).keys()
- get_tags()[source]#
Get tags from estimator class and dynamic tag overrides.
- Returns:
- collected_tagsdict
Dictionary of tag name : tag value pairs. Collected from _tags class attribute via nested inheritance and then any overrides and new tags from _tags_dynamic object attribute.
- is_composite()[source]#
Check if the object is composite.
A composite object is an object which contains objects, as parameters. Called on an instance, since this may differ by instance.
- Returns:
- composite: bool, whether self contains a parameter which is BaseObject
- classmethod load_from_path(serial)[source]#
Load object from file location.
- Parameters:
- serialresult of ZipFile(path).open(“object)
- Returns:
- deserialized self resulting in output at path, of cls.save(path)
- classmethod load_from_serial(serial)[source]#
Load object from serialized memory container.
- Parameters:
- serial1st element of output of cls.save(None)
- Returns:
- deserialized self resulting in output serial, of cls.save(None)
- predict(X) ndarray [source]#
Predicts labels for time series in X.
- Parameters:
- X3D np.array of shape (n_instances, n_channels, series_length)
or 2D np.array of shape (n_instances, series_length)
- Returns:
- y1D np.array of int, of shape [n_instances] - predicted class labels
indices correspond to instance indices in X
- predict_proba(X) ndarray [source]#
Predicts labels probabilities for sequences in X.
- Parameters:
- X3D np.array of shape (n_cases, n_channels, series_length)
or 2D np.array of shape (n_cases, series_length)
- Returns:
- y2D array of shape (n_cases, n_classes) - predicted class probabilities
First dimension indices correspond to instance indices in X, second dimension indices correspond to class labels, (i, j)-th entry is estimated probability that i-th instance is of class j
- reset()[source]#
Reset the object to a clean post-init state.
Equivalent to sklearn.clone but overwrites self. After self.reset() call, self is equal in value to type(self)(**self.get_params(deep=False))
Detail behaviour: removes any object attributes, except:
hyper-parameters = arguments of __init__ object attributes containing double-underscores, i.e., the string “__”
runs __init__ with current values of hyper-parameters (result of get_params)
Not affected by the reset are: object attributes containing double-underscores class and object methods, class attributes
- save(path=None)[source]#
Save serialized self to bytes-like object or to (.zip) file.
Behaviour: if path is None, returns an in-memory serialized self if path is a file location, stores self at that location as a zip file
saved files are zip files with following contents: _metadata - contains class of self, i.e., type(self) _obj - serialized self. This class uses the default serialization (pickle).
- Parameters:
- pathNone or file location (str or Path)
if None, self is saved to an in-memory object if file location, self is saved to that file location. If:
path=”estimator” then a zip file estimator.zip will be made at cwd. path=”/home/stored/estimator” then a zip file estimator.zip will be stored in /home/stored/.
- Returns:
- if path is None - in-memory serialized self
- if path is file location - ZipFile with reference to the file
- score(X, y) float [source]#
Scores predicted labels against ground truth labels on X.
- Parameters:
- X3D np.array (any number of channels, equal length series)
of shape [n_instances, n_channels, series_length]
- or 2D np.array (univariate, equal length series)
of shape [n_instances, series_length]
- y1D np.ndarray of shape [n_instances] - class labels (ground truth)
indices correspond to instance indices in X
- Returns:
- float, accuracy score of predict(X) vs y