adtw_cost_matrix¶
- adtw_cost_matrix(x: ndarray, y: ndarray, window: float | None = None, itakura_max_slope: float | None = None, warp_penalty: float = 1.0) ndarray [source]¶
Compute the ADTW cost matrix between two time series.
- Parameters:
- xnp.ndarray
First time series, either univariate, shape
(n_timepoints,)
, or multivariate, shape(n_channels, n_timepoints)
.- ynp.ndarray
Second time series, either univariate, shape
(n_timepoints,)
, or multivariate, shape(n_channels, n_timepoints)
.- windowfloat, default=None
The window to use for the bounding matrix. If None, no bounding matrix is used. window is a percentage deviation, so if
window = 0.1
, 10% of the series length is the max warping allowed. is used.- itakura_max_slopefloat, default=None
Maximum slope as a proportion of the number of time points used to create Itakura parallelogram on the bounding matrix. Must be between 0. and 1.
- warp_penalty: float, default=1.0
Penalty for warping. A high value will mean less warping.
- Returns:
- np.ndarray (n_timepoints, m_timepoints)
adtw cost matrix between x and y.
- Raises:
- ValueError
If x and y are not 1D or 2D arrays.
Examples
>>> import numpy as np >>> from aeon.distances import adtw_cost_matrix >>> x = np.array([[1, 2, 3, 4, 5, 6, 7, 8, 9, 10]]) >>> y = np.array([[1, 2, 3, 4, 5, 6, 7, 8, 9, 10]]) >>> adtw_cost_matrix(x, y) array([[ 0., 2., 7., 17., 34., 60., 97., 147., 212., 294.], [ 2., 0., 2., 7., 17., 34., 60., 97., 147., 212.], [ 7., 2., 0., 2., 7., 17., 34., 60., 97., 147.], [ 17., 7., 2., 0., 2., 7., 17., 34., 60., 97.], [ 34., 17., 7., 2., 0., 2., 7., 17., 34., 60.], [ 60., 34., 17., 7., 2., 0., 2., 7., 17., 34.], [ 97., 60., 34., 17., 7., 2., 0., 2., 7., 17.], [147., 97., 60., 34., 17., 7., 2., 0., 2., 7.], [212., 147., 97., 60., 34., 17., 7., 2., 0., 2.], [294., 212., 147., 97., 60., 34., 17., 7., 2., 0.]])