edr_cost_matrix¶
- edr_cost_matrix(x: ndarray, y: ndarray, window: float | None = None, epsilon: float | None = None, itakura_max_slope: float | None = None) ndarray [source]¶
Compute the EDR cost matrix between two time series.
- Parameters:
- xnp.ndarray
First time series, either univariate, shape
(n_timepoints,)
, or multivariate, shape(n_channels, n_timepoints)
.- ynp.ndarray
Second time series, either univariate, shape
(n_timepoints,)
, or multivariate, shape(n_channels, n_timepoints)
.- epsilonfloat, default=None
Matching threshold to determine if two subsequences are considered close enough to be considered ‘common’. If not specified as per the original paper epsilon is set to a quarter of the maximum standard deviation.
- itakura_max_slopefloat, default=None
Maximum slope as a proportion of the number of time points used to create Itakura parallelogram on the bounding matrix. Must be between 0. and 1.
- Returns:
- np.ndarray (n_timepoints, m_timepoints)
EDR cost matrix between x and y.
- Raises:
- ValueError
If x and y are not 1D or 2D arrays.
Examples
>>> import numpy as np >>> from aeon.distances import edr_cost_matrix >>> x = np.array([[1, 2, 3, 4, 5, 6, 7, 8, 9, 10]]) >>> y = np.array([[1, 2, 3, 4, 5, 6, 7, 8, 9, 10]]) >>> edr_cost_matrix(x, y) array([[0., 1., 1., 1., 1., 1., 1., 1., 1., 1.], [1., 0., 1., 2., 2., 2., 2., 2., 2., 2.], [1., 1., 0., 1., 2., 3., 3., 3., 3., 3.], [1., 2., 1., 0., 1., 2., 3., 4., 4., 4.], [1., 2., 2., 1., 0., 1., 2., 3., 4., 5.], [1., 2., 3., 2., 1., 0., 1., 2., 3., 4.], [1., 2., 3., 3., 2., 1., 0., 1., 2., 3.], [1., 2., 3., 4., 3., 2., 1., 0., 1., 2.], [1., 2., 3., 4., 4., 3., 2., 1., 0., 1.], [1., 2., 3., 4., 5., 4., 3., 2., 1., 0.]])