ColumnwiseTransformer

class ColumnwiseTransformer(transformer, columns=None)[source]

Apply a transformer columnwise to multivariate series.

Overview: input multivariate time series and the transformer passed in transformer parameter is applied to specified columns, each column is handled as a univariate series. The resulting transformed data has the same shape as input data.

Parameters:
transformerEstimator

scikit-learn-like or aeon-like transformer to fit and apply to series.

columnslist of str or None

Names of columns that are supposed to be transformed. If None, all columns are transformed.

Attributes:
transformers_dict of {strtransformer}

Maps columns to transformers.

columns_list of str

Names of columns that are supposed to be transformed.

Examples

>>> from aeon.datasets import load_longley
>>> from aeon.transformations.detrend import Detrender
>>> from aeon.transformations.compose import ColumnwiseTransformer
>>> _, X = load_longley()
>>> transformer = ColumnwiseTransformer(Detrender())
>>> Xt = transformer.fit_transform(X)

Methods

check_is_fitted()

Check if the estimator has been fitted.

clone()

Obtain a clone of the object with same hyper-parameters.

clone_tags(estimator[, tag_names])

Clone/mirror tags from another estimator as dynamic override.

create_test_instance([parameter_set])

Construct Estimator instance if possible.

create_test_instances_and_names([parameter_set])

Create list of all test instances and a list of names for them.

fit(X[, y])

Fit transformer to X, optionally to y.

fit_transform(X[, y])

Fit to data, then transform it.

get_class_tag(tag_name[, tag_value_default])

Get tag value from estimator class (only class tags).

get_class_tags()

Get class tags from estimator class and all its parent classes.

get_fitted_params([deep])

Get fitted parameters.

get_metadata_routing()

Get metadata routing of this object.

get_param_defaults()

Get parameter defaults for the object.

get_param_names()

Get parameter names for the object.

get_params([deep])

Get parameters for this estimator.

get_tag(tag_name[, tag_value_default, ...])

Get tag value from estimator class.

get_tags()

Get tags from estimator class.

get_test_params([parameter_set])

Return testing parameter settings for the estimator.

inverse_transform(X[, y])

Inverse transform X and return an inverse transformed version.

is_composite()

Check if the object is composite.

load_from_path(serial)

Load object from file location.

load_from_serial(serial)

Load object from serialized memory container.

reset()

Reset the object to a clean post-init state.

save([path])

Save serialized self to bytes-like object or to (.zip) file.

set_params(**params)

Set the parameters of this object.

set_tags(**tag_dict)

Set dynamic tags to given values.

transform(X[, y])

Transform X and return a transformed version.

update(X[, y, update_params])

Update parameters.

update(X, y=None, update_params=True)[source]

Update parameters.

Update the parameters of the estimator with new data by iterating over specified columns. Only works if self.transformer has an update method.

Parameters:
Xpd.Series

New time series.

update_paramsbool, optional, default=True
Returns:
selfan instance of self
classmethod get_test_params(parameter_set='default')[source]

Return testing parameter settings for the estimator.

Parameters:
parameter_setstr, default=”default”

Name of the set of test parameters to return, for use in tests. If no special parameters are defined for a value, will return “default” set.

Returns:
paramsdict or list of dict, default = {}

Parameters to create testing instances of the class Each dict are parameters to construct an “interesting” test instance, i.e., MyClass(**params) or MyClass(**params[i]) creates a valid test instance. create_test_instance uses the first (or only) dictionary in params

check_is_fitted()[source]

Check if the estimator has been fitted.

Raises:
NotFittedError

If the estimator has not been fitted yet.

clone()[source]

Obtain a clone of the object with same hyper-parameters.

A clone is a different object without shared references, in post-init state. This function is equivalent to returning sklearn.clone of self. Equal in value to type(self)(**self.get_params(deep=False)).

Returns:
instance of type(self), clone of self (see above)
clone_tags(estimator, tag_names=None)[source]

Clone/mirror tags from another estimator as dynamic override.

Parameters:
estimatorobject

Estimator inheriting from :class:BaseEstimator.

tag_namesstr or list of str, default = None

Names of tags to clone. If None then all tags in estimator are used as tag_names.

Returns:
Self

Reference to self.

Notes

Changes object state by setting tag values in tag_set from estimator as dynamic tags in self.

classmethod create_test_instance(parameter_set='default')[source]

Construct Estimator instance if possible.

Parameters:
parameter_setstr, default=”default”

Name of the set of test parameters to return, for use in tests. If no special parameters are defined for a value, will return “default” set.

Returns:
instanceinstance of the class with default parameters.

Notes

get_test_params can return dict or list of dict. This function takes first or single dict that get_test_params returns, and constructs the object with that.

classmethod create_test_instances_and_names(parameter_set='default')[source]

Create list of all test instances and a list of names for them.

Parameters:
parameter_setstr, default=”default”

Name of the set of test parameters to return, for use in tests. If no special parameters are defined for a value, will return “default” set.

Returns:
objslist of instances of cls

i-th instance is cls(**cls.get_test_params()[i]).

nameslist of str, same length as objs

i-th element is name of i-th instance of obj in tests convention is {cls.__name__}-{i} if more than one instance otherwise {cls.__name__}.

parameter_setstr, default=”default”

Name of the set of test parameters to return, for use in tests. If no special parameters are defined for a value, will return “default” set.

fit(X, y=None)[source]

Fit transformer to X, optionally to y.

State change:

Changes state to “fitted”.

Writes to self: _is_fitted : flag is set to True. _X : X, coerced copy of X, if remember_data tag is True possibly coerced to inner type or update_data compatible type by reference, when possible model attributes (ending in “_”) : dependent on estimator

Parameters:
XSeries or Panel, any supported type
Data to fit transform to, of python type as follows:

Series: pd.Series, pd.DataFrame, or np.ndarray (1D or 2D) Panel: pd.DataFrame with 2-level MultiIndex, list of pd.DataFrame, nested pd.DataFrame, or pd.DataFrame in long/wide format.

ySeries or Panel, default=None

Additional data, e.g., labels for transformation.

Returns:
selfa fitted instance of the estimator
fit_transform(X, y=None)[source]

Fit to data, then transform it.

Fits the transformer to X and y and returns a transformed version of X.

State change: changes state to “fitted”.

Writes to self: _is_fitted : flag is set to True. _X : X, coerced copy of X, if remember_data tag is True

possibly coerced to inner type or update_data compatible type by reference, when possible

model attributes (ending in “_”) : dependent on estimator

Parameters:
XSeries or Panel, any supported type
Data to be transformed, of python type as follows:

Series: pd.Series, pd.DataFrame, or np.ndarray (1D or 2D) Panel: pd.DataFrame with 2-level MultiIndex, list of pd.DataFrame,

nested pd.DataFrame, or pd.DataFrame in long/wide format

ySeries or Panel, default=None

Additional data, e.g., labels for transformation

Returns:
transformed version of X
type depends on type of X and output_data_type tag:
X | tf-output | type of return |

|__________|______________|________________________| | Series | Primitives | pd.DataFrame (1-row) | | Panel | Primitives | pd.DataFrame | | Series | Series | Series | | Panel | Series | Panel | | Series | Panel | Panel |

instances in return correspond to instances in X
combinations not in the table are currently not supported
Explicitly, with examples:
if X is Series (e.g., pd.DataFrame) and transform-output is Series

then the return is a single Series of the same mtype Example: detrending a single series

if X is Panel (e.g., pd-multiindex) and transform-output is Series
then the return is Panel with same number of instances as X

(the transformer is applied to each input Series instance)

Example: all series in the panel are detrended individually

if X is Series or Panel and transform-output is Primitives

then the return is pd.DataFrame with as many rows as instances in X Example: i-th row of the return has mean and variance of the i-th series

if X is Series and transform-output is Panel

then the return is a Panel object of type pd-multiindex Example: i-th instance of the output is the i-th window running over X

classmethod get_class_tag(tag_name, tag_value_default=None)[source]

Get tag value from estimator class (only class tags).

Parameters:
tag_namestr

Name of tag value.

tag_value_defaultany type

Default/fallback value if tag is not found.

Returns:
tag_value

Value of the tag_name tag in self. If not found, returns tag_value_default.

See also

get_tag

Get a single tag from an object.

get_tags

Get all tags from an object.

get_class_tag

Get a single tag from a class.

Examples

>>> from aeon.classification import DummyClassifier
>>> DummyClassifier.get_class_tag("capability:multivariate")
True
classmethod get_class_tags()[source]

Get class tags from estimator class and all its parent classes.

Returns:
collected_tagsdict

Dictionary of tag name : tag value pairs. Collected from _tags class attribute via nested inheritance. NOT overridden by dynamic tags set by set_tags or mirror_tags.

get_fitted_params(deep=True)[source]

Get fitted parameters.

State required:

Requires state to be “fitted”.

Parameters:
deepbool, default=True

Whether to return fitted parameters of components.

  • If True, will return a dict of parameter name : value for this object, including fitted parameters of fittable components (= BaseEstimator-valued parameters).

  • If False, will return a dict of parameter name : value for this object, but not include fitted parameters of components.

Returns:
fitted_paramsdict with str-valued keys

Dictionary of fitted parameters, paramname : paramvalue keys-value pairs include:

  • always: all fitted parameters of this object, as via get_param_names values are fitted parameter value for that key, of this object

  • if deep=True, also contains keys/value pairs of component parameters parameters of components are indexed as [componentname]__[paramname] all parameters of componentname appear as paramname with its value

  • if deep=True, also contains arbitrary levels of component recursion, e.g., [componentname]__[componentcomponentname]__[paramname], etc

get_metadata_routing()[source]

Get metadata routing of this object.

Please check User Guide on how the routing mechanism works.

Returns:
routingMetadataRequest

A MetadataRequest encapsulating routing information.

classmethod get_param_defaults()[source]

Get parameter defaults for the object.

Returns:
default_dict: dict with str keys

keys are all parameters of cls that have a default defined in __init__ values are the defaults, as defined in __init__.

classmethod get_param_names()[source]

Get parameter names for the object.

Returns:
param_names: list of str, alphabetically sorted list of parameter names of cls
get_params(deep=True)[source]

Get parameters for this estimator.

Parameters:
deepbool, default=True

If True, will return the parameters for this estimator and contained subobjects that are estimators.

Returns:
paramsdict

Parameter names mapped to their values.

get_tag(tag_name, tag_value_default=None, raise_error=True)[source]

Get tag value from estimator class.

Uses dynamic tag overrides.

Parameters:
tag_namestr

Name of tag to be retrieved.

tag_value_defaultany type, default=None

Default/fallback value if tag is not found.

raise_errorbool

Whether a ValueError is raised when the tag is not found.

Returns:
tag_value

Value of the tag_name tag in self. If not found, returns an error if raise_error is True, otherwise it returns tag_value_default.

Raises:
ValueError if raise_error is True i.e. if tag_name is not in self.get_tags(
).keys()

See also

get_tags

Get all tags from an object.

get_clas_tags

Get all tags from a class.

get_class_tag

Get a single tag from a class.

Examples

>>> from aeon.classification import DummyClassifier
>>> d = DummyClassifier()
>>> d.get_tag("capability:multivariate")
True
get_tags()[source]

Get tags from estimator class.

Includes the dynamic tag overrides.

Returns:
dict

Dictionary of tag name : tag value pairs. Collected from _tags class attribute via nested inheritance and then any overrides and new tags from _tags_dynamic object attribute.

See also

get_tag

Get a single tag from an object.

get_class_tags

Get all tags from a class.

get_class_tag

Get a single tag from a class.

Examples

>>> from aeon.classification import DummyClassifier
>>> d = DummyClassifier()
>>> tags = d.get_tags()
inverse_transform(X, y=None)[source]

Inverse transform X and return an inverse transformed version.

Currently it is assumed that only transformers with tags

“input_data_type”=”Series”, “output_data_type”=”Series”,

have an inverse_transform.

State required:

Requires state to be “fitted”.

Accesses in self: _is_fitted : must be True _X : optionally accessed, only available if remember_data tag is True fitted model attributes (ending in “_”) : accessed by _inverse_transform

Parameters:
XSeries or Panel, any supported type
Data to be inverse transformed, of python type as follows:

Series: pd.Series, pd.DataFrame, or np.ndarray (1D or 2D) Panel: pd.DataFrame with 2-level MultiIndex, list of pd.DataFrame,

nested pd.DataFrame, or pd.DataFrame in long/wide format

ySeries or Panel, default=None

Additional data, e.g., labels for transformation

Returns:
inverse transformed version of X

of the same type as X, and conforming to mtype format specifications

is_composite()[source]

Check if the object is composite.

A composite object is an object which contains objects, as parameters. Called on an instance, since this may differ by instance.

Returns:
composite: bool

Whether self contains a parameter which is BaseObject.

property is_fitted[source]

Whether fit has been called.

classmethod load_from_path(serial)[source]

Load object from file location.

Parameters:
serialobject

Result of ZipFile(path).open(“object).

Returns:
deserialized self resulting in output at path, of cls.save(path)
classmethod load_from_serial(serial)[source]

Load object from serialized memory container.

Parameters:
serialobject

First element of output of cls.save(None).

Returns:
deserialized self resulting in output serial, of cls.save(None).
reset()[source]

Reset the object to a clean post-init state.

Equivalent to sklearn.clone but overwrites self. After self.reset() call, self is equal in value to type(self)(**self.get_params(deep=False))

Detail behaviour: removes any object attributes, except:

hyper-parameters = arguments of __init__ object attributes containing double-underscores, i.e., the string “__”

runs __init__ with current values of hyper-parameters (result of get_params)

Not affected by the reset are: object attributes containing double-underscores class and object methods, class attributes

save(path=None)[source]

Save serialized self to bytes-like object or to (.zip) file.

Behaviour: if path is None, returns an in-memory serialized self if path is a file location, stores self at that location as a zip file

saved files are zip files with following contents: _metadata - contains class of self, i.e., type(self) _obj - serialized self. This class uses the default serialization (pickle).

Parameters:
pathNone or file location (str or Path).

if None, self is saved to an in-memory object if file location, self is saved to that file location. If:

path=”estimator” then a zip file estimator.zip will be made at cwd. path=”/home/stored/estimator” then a zip file estimator.zip will be stored in /home/stored/.

Returns:
if path is None - in-memory serialized self
if path is file location - ZipFile with reference to the file.
set_params(**params)[source]

Set the parameters of this object.

The method works on simple estimators as well as on nested objects. The latter have parameters of the form <component>__<parameter> so that it’s possible to update each component of a nested object.

Parameters:
**paramsdict

BaseObject parameters

Returns:
selfreference to self (after parameters have been set)
set_tags(**tag_dict)[source]

Set dynamic tags to given values.

Parameters:
**tag_dictdict

Dictionary of tag name : tag value pairs.

Returns:
Self

Reference to self.

Notes

Changes object state by setting tag values in tag_dict as dynamic tags in self.

transform(X, y=None)[source]

Transform X and return a transformed version.

State required:

Requires state to be “fitted”.

Accesses in self: _is_fitted : must be True _X : optionally accessed, only available if remember_data tag is True fitted model attributes (ending in “_”) : must be set, accessed by _transform

Parameters:
XSeries or Panel, any supported type
Data to be transformed, of python type as follows:

Series: pd.Series, pd.DataFrame, or np.ndarray (1D or 2D) Panel: pd.DataFrame with 2-level MultiIndex, list of pd.DataFrame,

nested pd.DataFrame, or pd.DataFrame in long/wide format

ySeries or Panel, default=None

Additional data, e.g., labels for transformation

Returns:
transformed version of X
type depends on type of X and output_data_type tag:
| transform | |
X | -output | type of return |

|__________|______________|________________________| | Series | Primitives | pd.DataFrame (1-row) | | Panel | Primitives | pd.DataFrame | | Series | Series | Series | | Panel | Series | Panel | | Series | Panel | Panel |

instances in return correspond to instances in X
combinations not in the table are currently not supported
Explicitly, with examples:
if X is Series (e.g., pd.DataFrame) and transform-output is Series

then the return is a single Series of the same type Example: detrending a single series

if X is Panel (e.g., pd-multiindex) and transform-output is Series
then the return is Panel with same number of instances as X

(the transformer is applied to each input Series instance)

Example: all series in the panel are detrended individually

if X is Series or Panel and transform-output is Primitives

then the return is pd.DataFrame with as many rows as instances in X Example: i-th row of the return has mean and variance of the i-th series

if X is Series and transform-output is Panel

then the return is a Panel object of type pd-multiindex Example: i-th instance of the output is the i-th window running over X