load_gunpoint#
- load_gunpoint(split=None, return_X_y=True, return_type='numpy3d')[source]#
Load the GunPoint univariate time series classification problem.
- Parameters:
- split: None or one of “TRAIN”, “TEST”, default=None
Whether to load the train or test instances of the problem. By default it loads both train and test instances into a single array.
- return_X_y: bool, default=True
If True, returns (features, target) separately instead of as single data structure.
- return_type: string, optional (default=”numpy3d”)
Data structure to use for time series, should be either “numpy2d” or “numpy3d”.
- Returns:
- X: np.ndarray
shape (n_cases, 1, 150) (return_type=”numpy3d”) or shape (n_cases, 150) (return_type=”numpy2d”), where n_cases is either 150 (split=”train” or “test”) or 300.
- y: np.ndarray
1D array of length 150 or 300, only returned if return_X_y is True The class labels for each time series instance in X If return_X_y is False, y is appended to X instead.
- Raises:
- ValueError is raised if the data cannot be stored in the requested return_type.
Notes
Dimensionality: univariate Series length: 150 Train cases: 50 Test cases: 150 Number of classes: 2 Details: http://timeseriesclassification.com/description.ph?Dataset=GunPoint
Examples
>>> from aeon.datasets import load_gunpoint >>> X, y = load_gunpoint()